
A Data Structure for Planning Based Workload
Management of Heterogeneous HPC Systems

Axel Keller

Paderborn Center for Parallel Computing
Paderborn University, 33098 Paderborn, Germany

axel.keller@uni-paderborn.de

Abstract. This paper describes a data structure and a heuristic to plan
and map arbitrary resources in complex combinations while applying
time dependent constraints. The approach is used in the planning based
workload manager OpenCCS at the Paderborn Center for Parallel Com-
puting (PC2) to operate heterogeneous clusters with up to 10000 cores.
We also show performance results derived from four years of operation.

Keywords: Scheduling, planning, mapping, workload management

1 Introduction

Todays HPC systems are heterogeneous, they consist of different node types
and accelerators (e.g., GPUs or FPGAs) are used to increase the application
performance. Disk storage, software licenses, virtual machines, or software con-
tainers are additional resources to be scheduled by a workload management
system (WLM). In the past Grid and Cloud computing brought challenges in
form of inter system applications, running on more than one system at the same
time or consecutively steered by a workflow-manager. The merge of HPC and
Big-Data already started and more complex workflows will arise and enhance
the complexity of scheduling. Keywords are for example: data aware scheduling,
co-allocations, provisional reservations, or SLAs.

Planning based WLMs are well prepared for such environments. In 2003, we
published a paper[6] which compared queueing and planning based WLMs on a
high level and introduced OpenCCS as a completely planning based WLM. Since
then, OpenCCS implemented some features mentioned in [6], like for example,
job-migration using Globus, or SLA negotiation and compliance. This work was
primarily done in the EU funded projects HPC4U[1] and Assessgrid[1].

However, all work done there was based on scheduling only entire nodes all of
the same type. At that time, we used a generic scheduler and a system-specific
mapping instance which verified the schedule. We learned, that planning and
mapping has to be done in the scheduler because the mapper had no info about
limits or fairness and the scheduler did not consider the requested topology in
a satisfying manner (e.g., a 2x4 grid on a system with a 2D-torus topology).
Additionally, the scheduler performance collapsed if managing several hundreds
of nodes and thousands of jobs.



In 2009, we redesigned OpenCCS. We aimed on supporting time shared op-
eration (i.e., more than one job on a node) on large heterogeneous clusters with
thousands of jobs, that is fast online planning of an arbitrary number of re-
sources. It should be easy to integrate commercial applications. Users should be
able to reserve resources, submit jobs with a deadline, and steer the mapping.
Users and groups should be automatically (un)locked by the system. This paper
reports the results of this redesign. Its central contribution is the basic data
structure and the planning and mapping heuristic based on this.

We start with a brief comparison of the queueing and planning approach and
name challenges of planning based WLMs. In Sect. 3 we introduce OpenCCS
focusing on terms which are related to the scope of this paper. Section 4 ex-
plains the central data structure used in the OpenCCS scheduler and its basic
operations. Based on this, Sect. 5 focuses on the principle process of planning
and mapping and describes some resulting aspects in more detail. Section 6 is
devoted to performance results derived from real operation over four years. In
Sect. 7 we compare the introduced method with other approaches and Sect. 8
summarizes the paper.

2 Queueing vs. Planning

The major criterion for the differentiation of WLMs is the planned time frame.
Queueing systems try to utilize currently free resources with waiting resource re-
quests and future resource planning for all waiting requests is not done. Hence,
waiting resource requests have no assigned start time. Planning systems in con-
trast plan for the present and future. Start times are assigned to all requests
and a complete schedule about the future resource usage is computed and made
available to the users.

Queueing. In principle there are several queues with different limits on the
number of requested resources and the duration (e.g., min, max, defaults, etc.)
exist for the job submission. Jobs within a queue are ordered according to a
scheduling policy (e.g., FCFS (first come, first serve)) and users may also order
their jobs. Queues might be activated only for specific times (e.g., prime time or
weekend).

The task of a queueing system is to assign free resources to waiting requests.
The job with the highest priority job is always the queue head. If it is possible to
start more than one queue head, further criteria like queue priority are used to
choose a request. If not enough resources are available to start any of the queue
heads, the system waits until enough resources become available.

These idle resources may be utilized with less prioritized requests by backfill-
ing mechanisms. Two backfilling variants are commonly used: (1) Conservative
backfilling [11]: Requests are chosen so that no other waiting request (including
the queue head) is further delayed. (2) EASY backfilling [10]: This variant is
more aggressive than conservative backfilling since only the waiting queue head
must not be delayed.



Although, it is not mandatory for queueing systems to know the maximum
duration of requests, it is often required by the administration, to decrease job
waiting times. The “cost of scheduling” is low and choosing the next request to
start is fast.

Planning. Planning systems assign start times to all requests. Obviously, dura-
tion estimates are mandatory for planning. With this knowledge reservations are
easily possible and planning systems are well suited to participate in multi-site
application runs.

Fair share[8, 9] is often used in queueing systems for prioritizing jobs on the
basis of a share of the machine and past and current usage. In planning systems,
controlling the usage of the machine is often done differently. One way is to
use time dependent constraints for the planning process. For example, during
prime time 25% of the system is kept free for “small” jobs. Also project or
user specific limits are possible, so that the system is virtually partitioned. Job
priorities and even more job dependencies (e.g., job B may start only after job
A has terminated with an error) have a stronger impact on the complexity of
the planning process than in queueing systems.

Planning based WLMs are real time systems. Assume two successive requests
(A and B) using the same nodes and B has been planned one-second after A.
Then, A has to be released in at most one-second. Otherwise B will be started
while A is still occupying the nodes. This delay would also affect all subsequent
requests, since their planned allocation times depend on the release times of
their predecessors. Hence, timeouts are necessary for such operations and the
WLM has to concern them while planning and adhere to the planned slots while
executing jobs.

Planning often implies mapping, because although the number of requested
resources (e.g., cores) may be free in the requested time interval, we cannot be
sure that always the same resources are free. Additionally, if planning complex
resource sets, comprising several resource types, we have to ensure that the
whole set can be mapped to a host and of course using placing directives directly
enforces mapping. Mapping is not mandatory while planning a start time, if the
requested resource set is provided by all hosts of the system and can be mapped
to a single host (e.g., requesting one core).

Changes in the resource configuration implies replanning all affected jobs.
Possible reasons are: a node fails or is set offline, or the amount of available
nodes resources changes (e.g., a memory DIMM or a network card fails).

The “cost of scheduling” is higher than in queueing systems. And as users can
view the current schedule and know when their requests are planned, questions
like “Why is my request not planned earlier? Look, it would fit in here.” are
likely to occur. In the next section we briefly describe OpenCCS focusing on the
terms, which are necessary to understand the following sections. A more detailed
description can be found in the OpenCCS manual[3].



3 The Computing Center Software

OpenCCS has a long history starting in the 1990s at the Paderborn Center
for Parallel Computing (PC2)[13]. Today, OpenCCS consists of several mod-
ules, which may run on multiple hosts to improve the response time. OpenCCS
is based on events (e.g., timers, messages, signals), and the communication is
stateless and asynchronous. The modules are multi-threaded but single-tasked.
The submission syntax is strongly PBSPro[12] compatible to ease the integration
of commercial applications. Figure 1 depicts the OpenCCS modules (described
below) and the event handling.

Fig. 1. The OpenCCS modules (left) and event type handling (right)

UI (User Interface): Provides a single access point to one or more systems via
command line interfaces.

AM (Access Manager): Manages the user interfaces and is responsible for au-
thentication, authorization, and accounting.

PM (Planning Manager): Schedules and maps the user requests onto the ma-
chine.

MM (Machine Manager): Provides machine specific features like node manage-
ment or job controlling.

IM (Island Manager): Provides OpenCCS internal name services and watchdog
facilities to keep OpenCCS in a stable condition.

OS (Operator Shell): The main interface for system administrators to control
OpenCCS.

NSM (Node Session Manager): Runs with root privileges on each node managed
by OpenCCS. The NSM is responsible for node access and job controlling.
At allocation time, the NSM starts an EM for each job.

EM (Execution Manager): Establishes the user environment (UID, shell set-
tings, environment variables, etc.) and starts the application.

OpenCCS uses the Resource and Service Description (RSD) [2] language to
specify all system specific hardware and software attributes like node properties,
network topology, timeouts, or custom resources.



The planning based approach, implemented in OpenCCS, has some implications.
There are no explicit queues in OpenCCS. The “waiting room” is the only equiv-
alent to a queue. A request is moved to this queue if OpenCCS was not able to
assign a start time to an already accepted request. Possible reasons are, for ex-
ample, that resources become unavailable while a request is in state PLANNED
or ALLOCATING and there are no comparable resources available. If the re-
sources become available again, OpenCCS automatically tries to replan waiting
requests.

Users are supposed to specify the expected runtime of their requests. If no
duration is specified, OpenCCS assigns a site specific one.

Privileges, default values, and limitations are attached to groups and users.
Entities like user, group, resource, or limit may have a validity period. If the
validity is exceeded, the entity is disabled. The rest of the section explains some
of this implications in more detail.

Validity. Planning provides an explicit notion of time, and this is also reflected
in limits, resource availability, etc. Hence in OpenCCS entities like resources,
users, groups, or limits all may have a validity period. It can be given as an
absolute end date, an absolute start and end date, or a cron string, specifying
repeated intervals. Validities are mandatory to map time dependent constraints
to the data structure described in Sect. 4.

Limit. Limits are assigned to a consumer (i.e., a user or a group) and there
may be a different limit for each resource. If a consumer has no limits assigned
this means all resources are available forever. A limit consists of the following
items:

Validity : The validity period of a limit.

Items: The maximum number of allocatable items.
Syntax: <min[/max]>
min is a integer and max specifies the percent of currently available items.
If both given, OpenCCS takes the maximum of min,max. Example: 30/45%
denotes a limit 30 items or 45% of the available items.

Duration: The maximum timespan the resource may be used.

Area: The maximum area.
For example, the area limit 1024h for the resource cores, allows a consumer
to request one core for 1024 hours, 1024 cores for one hour, or any matching
combination in between.

If a time dependent limit is exceeded, the affected request will be scheduled to
a later or earlier slot (depending on the request type). In Example 1, the ncpus

and tesla limits override the (*) limit (meaning all resources).



Resource Items Duration Area Validity

=======================================================

* unlimited 7d none always

ncpus 640 4d3h none 01.08.17-31.08.17

tesla unlimited none 500h always

arrayjobs 1000 none none always

jobs 5000 none none always

Example 1: Some possible limits

FreePool. FreePools are like limits, but describe the conditions for resources to
be kept free (i.e., they constrain the access to resources). A FreePool consists of
the following items: The validity period, the resource to be kept free, how many
of the resource should be kept free, and conditions to get access to the resources.
FreePools may be used to:

– Keep free 20% of the available cores but at minimum 10 cores for jobs which
request less than four cores for less than one hour.

– Keep all GPUs free for the groups G1, G2 and user alice. All others may
use the GPUs only for a maximum of two hours.

– Reserve all nodes hosting GPUs for maintenance each two months on Mon-
day from 8am to 6pm.

Requesting Resources In OpenCCS, users specify the resources needed by a
job by using chunks and job-wide resources (e.g., licenses or disk space). A chunk
specifies a set of resources that have to be allocated as a unit on a single node.
Chunks cannot be split across nodes. Syntax: rset=[N:]chunk[+[N:]chunk...]
A chunk comprises one or more res=value statements separated by a colon. res
is one of the OpenCCS built-in resources (e.g., cores, memory, or ompthreads) or
one of the customized specified via the RSD language. Chunks may be combined
with a placement specification to control how the chunks should be placed on
the nodes. Example 2 may illustrate what is possible.

Table 1. Possible placement specifications

Modifier Meaning

free no restriction
pack all chunks must be placed on one node
scatter only one chunk per node
exclusive only this job may use the node
shared this chunk may share the node with other chunks



rset=8:ncpus=2:mem=10g:rack=8

rset=ncpus=27:vmem=20g:arch=linux+4:acc=fpga

rset=5:ncpus=16:mem=12g:net=IB+ncpus=1:mem=4g,sw=g03,place=scatter:excl

Example 2: Resource requests using chunks

4 The Resource Usage Vector

In Sect. 2, we outlined challenges of a planning based WLM and in Sect. 3
the way OpenCCS is realizing the goals drafted in the introduction. The data
structure introduced here, is our central approach to tackle these issues. It is used
to represent time dependent limits, FreePools, reservations, and the available
resources in the whole managed system and on its nodes.

We store slots of used or free items sorted by time for each used resource.
We call this a resource usage vector (RUSV).
A slot comprises three components. The start time, the stop time, and the num-
ber of items, which are used or free within the interval [start, stop]. If stop time
is 0, this means [start,∞[.
A RUSV additionally has the following components:

maxAvl : the maximum available number of items,
avl : the currently available number of items (i.e., maxAvl - defect),
minDist : the minimal time distance between two slots, normally 1 s.

In the following Ri[j] denotes the slotj in RUSVi. We do not store slots which
are completely “free” (i.e., if storing used items and slot.items ≤ 0 or, if storing
free items and slot.items ≥ RUSV.avl). Figure 2 depicts a simple example. Please
note, that in all intervals, except the specified ones, the number of used items is
0, since this RUSV stores used items.

Fig. 2. A simple example of a RUSV



4.1 Basic Operations

On RUSVs we apply the following basic operations:

Increment (⊕) Adds a slot to a RUSV.
Notation: RUSV ⊕ slot
Increments the number of items of RUSV in the interval [slot.start, slot.stop]
by slot.items. Missing slots are added.

Decrement (	) Subtracts a slot from a RUSV.
Notation: RUSV 	 slot
Decrements the number of items of RUSV in the interval [slot.start, slot.stop]
by slot.items. “Free” slots are removed.

Addition (+) Adds two RUSVs.
Notation: R3 = R1 + R2

This is done by ∀i ∈ R2: R1 ⊕ R2[i] .
Subtraction (−) Subtracts two RUSVs.

Notation: R3 = R1 - R2

This is done by ∀i ∈ R2: R1 	 R2[i] .
minFree (mf) Minimum of free slots in R1 and R2.

Notation: R3 = mf(R1, R2)
This is done by: ∀i ∈ R2: R3[i] = max(R2[i].items, (R1.avl - R2[i].items)) .
We do not add new slots, and gaps in R1 are processed. We use this operation
to integrate a resource limit into a RUSV. For example, R1 is the number of
available resources in the system and R2 is the limit for this resource.

Intersection (∩) Intersects R1 and R2. R1 and R2 store free items.
Notation: R3 = R1 ∩ R2

This is done by: ∀i ∈ R2: R3[i].items = min(R1[i].items, R2[i].items) .
As a result R3 holds all slots for which at least R3[i].items are free in R1

and R2 at the same time.
getFreeSlots (R1, F,D, T1, T2) Search in R1 for slots with at least F free items

with a duration ≥ D in the interval [T1, T2].
Notation: R2 = getFreeSlots(R1, F,D, T1, T2)

For all operations, the following is valid: If the RUSV stores free items, then
slots with slot.items ≥ RUSV.avl are removed. If the RUSV stores used items,
then slots with slot.items ≤ 0 are removed. Consecutive slots are joined if their
items are equal and their distance is ≤ rus.minDist. Figure 3 depicts the possi-
ble overlaps, we have to handle. The actions done are of course specific to the
combination of operation and case.

For example, assume a RUSV storing used items. Then operation 	 and case
(1) leads to act.items -= new.items and if act.items ≤ 0, slot b will be removed.
Operation ⊕ and case (1) leads to new slots a and c and b.items += new.items.
Before we explain the principle planning and mapping process, we introduce the
following terms.

sRS (System Resource Set) For each known resource (e.g., cores, memory,
GPUs, licenses, etc.), we have one RUSV to reflect the usage of the whole
system. The sRS RUSVs hold used items.
Notations: sRSr is the RUSV of resource r and sRSr[i] is slot i in sRSr.



Fig. 3. Possible slot overlap cases

nRS (Node Resource Set) For each known resource, a node has one RUSV
to reflect its usage. The nRS has the same structure as the sRS. If a re-
source of the sRS is not available on a node the related RUSV is empty (i.e.,
nRSr.avl = 0).

rRS (Reservation Resource Set) It is a subset of the sRS depending on
what resources are reserved. All planning and mapping routines, described
in Sect. 5, are the same for normal jobs and for jobs running in a reservation.

reqRS (Requested Resource Set) The user requested resources (chunks and
job wide) in an internal format. Please note, there are no RUSVs in a reqRS.

jRS (Job Resource Set) For each requested resource of a job, we summarize
all requested chunk and job wide resources.
E.g., requesting 8:ncpus=2:mem=10g, results in a jRS of ncpus=16:mem=80g.

usdRS (Used Resource Set) The resources which are already assigned to a
consumer. The usdRS has the same structure as the sRS and is used while
processing consumer specific limits.

uRS (User Resource Set) For each requested resource we have a RUSV re-
flecting the users view on the system related to limits, FreePools, and already
assigned resources. The uRS has the same structure as the sRS and is built
in the planning process.

5 Planning and Mapping

Here, we describe the principle process of planning and mapping requests using
RUSVs. At submit time the user specifies the resources which should be used
(i.e., chunks and job wide resources) and when and how long the resources will
be used (e.g., provisional, best-effort, deadline, fixed start time, slot-aware start
time, SLAs, duration, etc.). Additionally, the user may specify how the chunks



should be placed (e.g., pack, scatter, free, shared, exclusive) and how the job
should be processed (e.g., checkpointing, re-start, etc.). Based on this specifica-
tions, the PM starts the planning which is divided into three phases.
Phase 1 checks if and when enough resources are free concerning all constraints
like limits, FreePools, or already assigned resources.
Phase 2 does the mapping. If the resources can be mapped to all nodes, mapping
is postponed to allocation time. Mapping is a separate layer to allow different
mapping policies.
Phase 3 updates the usdRS, the sRS, and the nRS of all affected nodes. In the
following, we describe these steps in more detail.

5.1 Planning

When a new job comes in, we first scan the resource request and build internal
data structures. Thereafter, we add missing default and force values (overwrite
user given values), and check if all requested resources are known and available
(requested ≤ maxAvl). Default and force values may be assigned to the system,
the group, or the user.As a result, we get the reqRS and the jRS.

We then determine the search interval [T1, T2] which depends on the job
type (e.g., best effort, reservation, deadline). For example, the search interval of
a reservation is of course given by the user, whereas the search interval of a best
effort job starts at submit time and ends never. All subsequent operations are
working in this search interval.

After determining FreePools and limits matching the resource request and
[T1, T2], we create the uRS by computing: ∀r ∈ jRS:

uRSr = sRSr + FreePoolr and then
uRSr = mf(uRSr, limitr − usdRSr) .

Processing a resource set (e.g., the sRS), means that for all resources in
question the related RUSV operations, introduced in Sect. 4, are performed.

The uRS reflects now the user’s view on the amount of available resources in
the search interval. Hence, we are able to search for slots where all requested re-
sources are available at the same time in the requested amount for the requested
duration. This is done by computing:
∀r ∈ jRS: RfreeSlots = RfreeSlots ∩ getFreeSlotsr(uRSr, Fr, D, T1, T2) .

If RfreeSlots is not empty, we try to find a valid mapping.
The complexity of the planning process without mapping is independent of

the number of jobs in the system, since we process only RUSVs.

5.2 Mapping

The input is the job’s duration D, the reqRS, the jRS, and RfreeSlots as a result
of the planning process described in the last section. Mapping is also done in two
phases. Phase 1 determines a candidate list comprising nodes on which at least
one chunk ∈ reqRS is unused for the duration D, in the search interval. Phase
2 then uses this list to select nodes according to a policy (e.g., greedy, energy



efficiency, etc.). For this purpose, a weight (i.e., a scalar value) is computed for
all nodes. The weight is used to rank the nodes from “cheap” to “expensive”.
It is computed by: ∀r ∈ consumable resources provided by the node:

Wnode = max
(
Wnode,

r
rsystem

)
and then Wnode = Wnode ∗ coressystem + prionode ∗ coressystem .
coressystem is the number of available cores in the system.
prionode is an integer value and may be specified by the administrator via RSD.
The basic steps of phase 1 are:

1. Build Ncand: A list of all usable nodes providing the required chunks in
principle. Ncand is then sorted by the node’s weight.

2. Build FCNn,c: ∀n ∈ Ncand and for each requested chunk c build a RUSV
where the chunk is free for at least duration D on the node:

∀r ∈ chunkc: FCNn,c ∩ getFreeSlots(nRSr, Fr, D, T1, T2) .
If FCNn,c for a node n is empty, this node is removed from Ncand. To get
a good node utilization, we first compute a weight for each requested chunk
related to a node, similar to the node’s weight, and sort the chunks by their
weight in descending order. As a result we get X RUSVs per node. X is the
number of requested chunks and FCNn,c[i].items holds the number of free
chunks.

3. Build FCJc: For each requested chunk build a RUSV holding the sum of all
related FCNn,c by computing:

∀n ∈ Ncand and ∀c ∈ reqRS: FCJc=
∑

c,n FCNn,c

and removing all intervals with less than the required number of chunks or
a duration < D. We then check if enough chunks are available. If not then
the job cannot be mapped within the search interval.

4. Build FS: The intersection of all FCJcby computing:
∀c ∈ reqRS: FS ∩ FCJc .

FS then holds all slots with a duration ≥ D, where all chunks are available
at the same time.

The result of phase 1 is: A RUSV (FS) with available time slots ≥ D and a list
of nodes (Ncand) and for each node FCNn,c (a RUSV for each chunk with free
time slots ≥ D).

If FS is not empty, we have found a set of nodes which provide the resources.
We then enter phase 2. Until now, we do a greedy mapping. The Greedy mapper
tries to map expensive chunks on cheap nodes first. If mapping was not possible
for all slots in FS, we try another slot of RfreeSlots else, we build the mapping-
data njRS. For each mapped host, it holds information which resources in what
amount the host provides. The njRS can be seen as a node specific jRS.

The complexity of the mapping process is independent of the number of jobs
in the system. It depends on the number of nodes and the job’s chunk complexity.
For example mapping a chunk with requesting one core can be done in more ways
than mapping a chunk comprising 32 cores and a GPU.



5.3 Booking

The last step is to commit the planned resources for the planned interval in
usdRS, sRS, and nRS by computing:

∀r ∈ jRS and ∀s ∈ {sRS, usdRS}: sr ⊕ jRSr .
For nRS, we book on all mapped nodes:

∀r ∈ node’s njRS: nRSr ⊕ njRSr .
The inverse operation (i.e., revoke) is done by computing 	 instead of ⊕. Revoke
is used if a job is removed or while scanning for a better plan.

5.4 Notable Aspects

Of course, there are a lot of pitfalls and exceptions to cope with while applying
the heuristic outlined above. In the following, we describe some aspects.

Backfilling. Backfilling is invoked whenever a job has been removed from the
plan. It affects all jobs with a planned start time after the removed job. To
avoid long answer times (e.g., 100,000 planned jobs), backfilling is done in the
background controlled by a special backfilling thread. The basic two steps are:

1. Sample affected jobs and sort them (by job-priority, submit-time, etc.) A
job’s priority is computed automatically at submit time. Criteria are for
example: job type, requesting expensive or “special” resources, or node par-
allelism.

2. For each job try to find a “better” place in the plan. Following a First-Fit
strategy, we first unbook the job’s resources and plan it again. If the planned
start time is earlier than the previous one, we book the new time interval,
else the old one. Other strategies are possible but not yet implemented. Jobs
are started immediately if possible.

Replanning. Replanning is invoked if a job cannot be allocated due to an
allocation error or a timeout. We then displace jobs with a lower priority to
ensure that the job in question can be allocated at the planned start time.
Replanning is also necessary if a user altered the job specification, an already
assigned resource becomes unavailable (e.g., if a node is set offline or a node
monitors a resource change), or a node is available again. In the latter case all
waiting and matching jobs are then replanned.

Estimation of job runtime. Overstimation is handled by backfilling. Under-
estimation results normally in aborting the running job. However, users may
increase the runtime via altering the job. There exists also a limit which we nor-
mally set to 10% of the initial runtime. Additionally, users may specify that the
running job is notified by OpenCCS X minutes before the maximum duration
ends. This is done by running a script or sending a signal to the job. The job
then can react.



Reservations. Users may reserve resources in advance and submit then jobs to
the reservation. If planning a job for a reservation, we use rRS instead of sRS
and the maximum search interval is the duration of the reservation. Hence, for
the scheduler, a reservation is an own system.

Exclusive node access. To be able to compute RfreeSlots for exclusive node
access, we need to know the number of free cores to be searched for. For example,
assume a cluster with nodes having 16, 32, and 240 cores and the user requests
10:npcus=12, place=free:excl. How many cores should be free?

Since arrangement is free, we could map more than one chunk on a node with
32 or 240 cores. Here, the planning phase needs mapping data to be accurate
which is not possible because we cannot map before planning. To circumvent
this, we compute an average number of cores for all nodes.

Timeouts. Since a planning based WLM is a real time system, we have to use
timeouts for nearly all operations. For example, the administrator specifies how
long allocating or releasing a job may last. If a timeout is exceeded, the node in
question is set “down” in the scheduler and all related requests are replanned.

“Expensive” resources. Jobs using a GPU often also need at least one CPU
core on the host. To avoid that a job which does not need the GPU blocks all CPU
cores on the host, it may be specified in RSD that X cores are kept free for jobs
requesting GPUs. Jobs not requesting GPUs, only get min(availableCores −
X, requestedCores). While building FCNn,c, we also ensure that exclusive node
access is not possible for jobs not using a GPU.

To avoid that expensive nodes (e.g., an SMP node with 32 cores and 1 TB
RAM) get blocked by long running cheap chunks, but still are usable, the admin-
istrator my define node specific limits. For example jobs may only be mapped
to an SMP node if they request at least 80 g virtual memory, or 66 g memory, or
17 cores, or their duration is ≤ 12 h. This is applied while building Ncand.

Accelerating planning and mapping. If we have FreePools and limits with
a cron based validity, we accelerate the planning process, by building a template
RUSV for the validity and then transpose it to the respective needed time in-
terval. For this purpose, we use the routine: R2 = cronToRUSV(R1, I, T1, T2, P ).
R1 is the template RUSV starting at 1.1.1970 (i.e., (time_t) 0) and holding
one period. P is the cron’s period length (hour, day, or week). To get a RUSV
with absolute times, we add a time offset (derived by T1, T2, and P ) to each
R1[i].start and stop and set R1[i].items to I. We do this in a loop with step size
P until [T1, T2] is filled. If we assume a validity of “every Monday and Friday
from 7am to 11am” and T1 is 1.1.2018 and T2 is 31.12.2025. P is then a week.

To accelerate the mapping the Ncand list is built only once. It is rebuilt,
whenever a node becomes available again. The node specific FCNn,c in the
mapping process are built in parallel because they are independent. For this
purpose the scheduler module PM uses a dynamic thread pool. The nodes to
process are put in a queue and each of the threads takes a node and computes
FCNn,c for this node until the queue is empty.



6 Performance Results

All numbers in this section are derived from real operation over four years on
our OCuLUS and ARMINIUS clusters [13].

OCuLUS is running Scientific Linux and consists of 616 compute nodes with
in total 9.920 CPU cores, 8 Xeon-Phis, and 32 GPUs. The nodes have 64 GB,
256 GB, or 1 TB RAM. All nodes are connected by Infiniband and Ethernet. The
Xeon-Phis may be used in offload or native mode. The scheduler module PM is
running on a host equipped with two Intel Xeon CPUs E5-2670, 2.60 GHz and
64 GB RAM. The PM is configured to pin on the cores 8-15, the thread-pool
maximum size is 8.

ARMINIUS is running Scientific Linux and consists of 62 compute nodes with
in total 660 CPU cores. All nodes are connected by Infiniband and Ethernet. The
PM is running on a host equipped with two Intel Xeon CPUs X5650, 2.67 GHz
and 36 GB RAM. The PM is configured to pin on the cores 8-10 (ARMINIUS
has only 62 nodes) and the thread-pool size is limited to 8.

OpenCCS on OCuLUS processed about about 4.5 million jobs for about
200 different users in about 70 groups. The job sizes ranged from one to 4,096
cores. The runtimes ranged from seconds to 60 days. The initial duration limit
for a new project at PC2 is set to 7 days. The average number of processed
jobs per day was 3,082 and the maximum was 196,217. 94% of the submitted
jobs completed, 6% were removed by the users before they started. The average
runtime was 184 m, the average waiting time 191 m. The average accuracy of
the job’s duration estimation was 22%. The plan normally comprises a time
interval of 8 to 10 weeks and the sRS holds about 300 to 400 slots. The bad
accuracy is mainly driven by the large number of one core jobs, submitted as
job arrays. Example 3 from the OpenCCS reporting tool gives an overview of
the job distribution related to requested cores. The data was sampled in 2016.

===================================================================
Req. Avg. Avg. Avg. %Total Sum

Rank cores Jobs Walltime Accuracy Waiting Occupied Occ.
===================================================================

1 16 57,516 10h 41.67% 7h 17.75% 17.75%
2 32 9,701 1d50m 39.68% 20h 14.19% 31.93%
3 1,024 277 19h 65.30% 8d18h 10.34% 42.27%
4 768 468 10h 55.91% 12d10h 6.63% 48.90%
5 64 3,883 13h 46.00% 11h 6.30% 55.20%
6 128 14,002 1h 26.43% 5h 4.74% 59.94%
7 256 684 13h 39.30% 14h 4.40% 64.34%
8 1,536 77 16h 64.01% 22d22h 3.62% 67.96%
9 1 1,480,565 1h 21.39% 2h 3.55% 71.51%

10 512 151 16h 62.61% 17h 2.33% 73.83%

Example 3: OCuLUS job distribution related to requested cores, ranked by
occupied core hours.



-----------RUSV INFO -------------------------
Number of RUSV-create calls : 95,766,132
Number of RUSV-free calls : 169,898,098
Number of RUSV-slot-new calls : 250,851,576
Number of RUSV-slot-free calls : 233,838,317

-----------VECTOR INFO -------------------------
Vectors (used/avail) : 5,780,091 / 6,291,456
Elements(used/avail/filling) : 11,014,670/ 61,465,796 / 17.92%
Memory (sum/payload/overhead) : 663.87MB / 153.44MB / 510.43MB
Allocs/Reallocs/Frees : 11,518,320/ 16,711,065 / 0

Example 4: Memory consumption of the OCuLUS PM

The PM on OCuLUS uses about 6 GB RAM if 15 k jobs are in the system.
Based on the data structure introduced in Sec. 4, the PM uses a large number
of RUSVs. Example 4 gives an overview of the memory usage logged by the PM.
There are 10 k jobs in the plan, the first backfill has been processed and sRS
holds 345 slots.

On OCuLUS, we measured up to about 100 processed job submissions per
second by running 30 clients on the two access nodes. Each client submitted best
effort jobs in a loop. The jobs requested chunks with two cores and a maximum
runtime of 2 m. Since the jobs were also running on the cluster, this is the
OpenCCS performance.

The performance of the PM itself is higher. As described in Sec. 5.2, the
runtime of the mapping process depends on the number of nodes and the com-
plexity of the requested chunks. This is reflected if we look on the number of
backfills per second which is continuously measured by the PM. On OCuLUS,
we see numbers up to 500 and sorting of 60 k jobs by job priority takes about
20 ms. The time to plan a job array with 10 k jobs takes about 30 s. Job array
planning is done in chunks of 500 sub-jobs. On ARMINIUS, we see up to 1500
backfills per second.

Core pinning is essential for the performance of the PM. The number of
backfills per second increases by a factor of about two if pinning is activated.
This is related to the large amount of RUSV accesses.

OpenCCS modules may be restarted at any time and if an OpenCCS module
crashed, it will be automatically restarted by the IM. At restart a module reads
its status data and synchronizes the job states with its partners. The time the
PM needs to recover 5000 jobs takes about 20 s.

7 Related Work

There are a lot of papers related to the planning based approach. Since this
paper is more a result of practical work, this section does not cover the whole
area of planning based scheduling. We only relate to similar work.



Cluster and Grid. In [4], Chlumsky et al. propose a similar approach as pre-
sented here. They extend the Torque[15] scheduler to allow planning jobs to
different clusters. Their approach uses job lists, holding start and completion
time and gap lists, representing unused periods of CPU time and the amount of
free RAM across nodes within a cluster. Both list types are sorted by time. The
gap list may be seen as a kind of RUSV. A gap list entry points to the appro-
priate node, the node’s free RAM, and to the nearest following job. Planning
an incoming job is done by finding a place in the gap list, backfilling is done by
shifting jobs into earlier “slots”. The authors use a Tabu Search heuristic to op-
timize the current schedule. Compared to the work presented here, the approach
of [4]. is restricted to plan only two resources (cores and memory). Requesting
complex resource sets comprising different chunk types or job wide resources is
not possible. They also neglect limits, reservations, and placing directives.

In [14], Schneider et al. propose a list based data structure to support advance
reservations in Grid environments and local WLMs for HPC systems. Lists hold
information about the summed up booked capacity and for each node mapping
information. The list entries represent a range of free resources. Such a list may
be organized in three ways:

1. As time exclusive list. For each point in time there is only one item, repre-
senting the current available capacity. The list is ordered by the start time
of the blocks, that is, adjacent blocks follow each other in the free list.

2. As capacity list. Each item spans the whole time span where at least the
given capacity is free. During this time span, there may be other sub time
spans with more capacity available; these time spans are managed as sub
lists of the longer block. Hence, a hierarchical data structure is used.

3. As mixed list. The splitting of the list items does not follow any rule. The
items may be ordered by the start time and the available capacity. The list
items should have references to all adjacent free blocks.

For their evaluations, the authors simulate a cluster with 128 CPUs and use the
time exclusive list type. They compare three ways of organizing the lists: slotted
time, list based, and AVL tree.

Schneider et al. use an approach which is very close to the one introduced
here. The information about the summed up booked capacity corresponds to our
sRS, the mapping information to the nRS, and the list entries are structured
similar to a slot in a RUSV. The time exclusive list is nearly the same as our
resource sets, except that we handle slots of used instead of free resources and
do not store slots where all resources are in use.

Schneider et al. support only exclusive booking of nodes, and, just as in [4],
complex resource sets comprising different chunk types or job wide resources,
limits, and placing directives are not available. Additionally, they do not de-
scribe how planning and mapping should work if more than one resource type
is requested, like for example ncpus=5:gpus=3.

Both, the authors of [4] and [14], compared their approach with other papers
and assessed them all weaker, related to their approaches. Hence, and for the
lack of space, we do not consider them here.



Big-Data. The following WLM examples are, in principle, all based on the
MapReduce model and schedule jobs on a Hadoop platform focusing on the need
for locality and elasticity of MapReduce jobs. Such jobs often consist of multiple
tasks (e.g., map or reduce) that are run on different cluster nodes, where the
unit of per-task resource allocation is a container (i.e, a bundle of resources such
as CPU, RAM and disk I/O). An OpenCCS chunk is like a container related
to scheduling. Due to the MapReduce model, tasks are often loosely coupled,
malleable and may be preempted. MapReduce jobs are mainly characterized by
a start time, a deadline, and a collection of stages. Each stage has a total demand
of containers and may also have a minimum parallelism constraint (or gang size)
of containers. The most important SLO is the job deadline.

YARN [17] schedules jobs on a Hadoop platform and comprises three basic
blocks. The Resource Manager (RM), the Application Manager (AM), and, on
each node, a Node Manager (NM). The RM is scheduling containers bound to a
particular node.
There is on AM for each job. The AM is the head of a job, managing all lifecycle
aspects including dynamically increasing and decreasing resource consumption,
managing the flow of execution, handling faults and computation skew, and
performing other local optimizations. Hence, the AM can be seen as a kind of
workflow engine dividing a job into tasks and mapping tasks to containers. An
AM is requesting containers from the RM and then starting job-tasks on such
containers by using the NMs which are responsible for establishing, observing,
and removing containers on a node. A container request to the RM includes:
the number of containers, the resources per container, locality preferences, and
priority of requests within the application. An AM may request containers to be
killed when the corresponding work is not needed any more.
In contrast to OpenCCS, YARN does not plan to the future and it does not know
maximum runtimes of a container. To our best knowlegde YARN can only handle
containers consisting of CPUs and memory and is not able to schedule job-wide
resources like licenses. However, YARN supports preemption of containers which
is not supported by OpenCCS.

In [16] the authors describe TetriSched, a scheduler integrated in the YARN
reservation system. It considers both, job-specific preferences and estimated job
runtimes in its allocation of resources. Job-specific preferences are provided by
tenants as composable utility functions, They allow TetriSched to understand
which resources are preferred, and by how much, over other acceptable options.
Estimated job runtimes and constraints on job execution times (e.g., deadlines
or reservations) allow TetriSched to plan ahead in deciding whether to wait for
a busy preferred resource to become free or to assign a less preferred resource.
TetriSched translates the given requirements into a Mixed Integer Linear Prob-
lem (MILP) that is solved by an external solver to maximize the overall utility.
The main advantage of TetriSched over OpenCCS is its ability to compute a
global schedule by simultaneously considering the placement and temporal pref-
erences of all the jobs in each compute cycle, and to support user given utility
functions (e.g., the job needs two time units on GPUs and three on CPUs) which



allow a greater scheduling flexibility. OpenCCS does a greedy job-by-job plan-
ning. However, it is not quite clear how long it takes to solve a MILP, if there
are tens of thousands of jobs in the system. In [5] the authors use heuristics due
to the very long runtime of the MILP solver. TetriSched seems to support only
space-sharing (i.e., a job is occupying a node exclusively).

Rayon [5] is another extension to YARN. It provides reservation-based schedul-
ing which leverages explicit information about the deadline and time-varying
resource needs of a job. Rayon comes with a declarative reservation definition
language (RDL), that allows users to express a rich class of constraints, including
deadlines, malleable and gang parallelism requirements, and inter-job dependen-
cies.
The scheduler itself comprises a framework for planning SLA jobs by using fast,
greedy heuristics, and a component for the dynamically assignment of cluster re-
sources to the planned and best-effort jobs, which also adapts to changing cluster
conditions. Rayon makes use of planning in two ways: online, to accept/reject
jobs on arrival, and offline, to reorganize sets of accepted jobs.
Rayon immediately plans incoming SLA jobs and assigns a start time. Best ef-
fort jobs are filled in the remaining gaps by the adaptive scheduler component.
The Rayon RDL is automatically transfered to a MILP formulation like in [16].
However, for the authors solving MILPs is not practical for online scenarios, and
cannot scale to large problem sizes (solver runtime ranged from 80s to 3200s).
Hence, Rayon, just like OpenCCS does, plans one job at a time, and never re-
consider placement decisions for previously jobs. A job is divided in containers
with a minimum runtime of X time-units. In case of under-reservation, an SLA
job will run with guaranteed resources up to a point, and then continue as a
best-effort job until completion.
OpenCCS also supports reservations and deadline scheduling but does not sup-
port neither malleable jobs nor preemption. Jobs in the HPC world are still
mainly rigid. Best-efforts jobs in OpenCCS are not starving which may happen
in Rayon. OpenCCS also allows renegotiation of accepted jobs.
It seems that Rayon, like YARN does, mainly supports CPUs and memory as
container parts. Customizable resources are not possible. It is also not clear if
Rayon supports time dependent limitations and heterogeneous clusters.

Morpheus [7], which is integrated in YARN, aims on lowering the number
of deadline violations while retaining cluster-utilization. It builds on three key
ideas: (1) automatically deriving SLOs and job resource models from historical
data, (2) relying on recurrent reservations and packing algorithms to enforce
SLOs, and (3) dynamic reprovisioning to mitigate inherent execution variance.
The job resource model is a time-varying skyline of resource demands. It em-
ploys a MILP formulation, that explicitly controls the penalty of over / under
provisioning and balances predictability and utilization. As in [5] Morpheus does
not use an external MILP solver due to the long runtimes.
Morpheus continuously observes and learns as periodic jobs (scheduled runs of
the same job on newly arriving data) execute over time. The findings are used to



reserve resources for the job ahead of job execution, and dynamically adapt to
changing conditions at runtime. Periodic jobs are supported by recurring reser-
vations, a scheduling construct that isolates jobs from the noisiness of sharing
induced performance variability by assigning dedicated resources. Morpheus can
only enforce container-level resources, but lacks control over globally-shared re-
sources. When Morpheus needs to allocate resources to a new periodic job, it
ignores most of the scheduled non-periodic jobs, and then attempts to reallocate
resources for non-periodic jobs in case they need more resources. Morpheus as-
sumes a homogeneous cluster. Extra resources are granted for up to T seconds
and then are reevaluated. This allows an elastic job to use extra parallelism to
make up for lost time. OpenCCS does not displace already planned jobs while
planning new ones.
Mapping of containers is done by a cost-based approach that takes into account
current cluster allocation and the resource demand of each job. Each time slot
in the plan is associated with a cost and the mapper allocates incoming jobs in
a way that is cost-efficient with respect to the overall costs. This is analogous to
limits and FreePools in OpenCCS. However OpenCCS then reduces the number
of available resources for the job in the related time slots.

8 Conclusion

We presented a data structure and a heuristic to plan and map arbitrary re-
sources in complex combinations while applying time dependent constraints. We
implemented the heuristic in the planning based WLM OpenCCS. Our approach
has stand up to the reality check during four years of real operation on two het-
erogeneous HPC clusters (one of them with about 10,000 cores) and proved its
stability, flexibility, and performance. Of course, there are drawbacks inherent
to our approach and there are plenty of additional features to be added. Back-
filling, for example, is a time consuming operation, especially if using a more
complex policy than First-Fit. A planning horizon (e.g., 4 weeks) could reduce
the amount of jobs to be planned. Fair share is part of our limit design, and we
see a good and fair system utilization. However, we learned that this approach
does not work sufficiently if the jobs do not fully utilize the system. Therefore, we
will include dynamic soft limits which depend on the utilization of the system,
allowing consumers to extend their hard limits. Additionally, we plan to ex-
tend the mapping layer to allow topology aware mapping (e.g., group chunks by
switches). Also, releasing and requesting resources while a job is running is part
of our future work. There is a reason why queueing based WLMs dominate the
market. Queues are fast and very flexible. However, we think the planning based
approach is advantageous if time dependent constraints have to be considered.

Acknowledgements

I would like to thank Christoph Kleineweber, Dr. Lars Schäfers, and Jörn Schu-
macher for their valuable contribution to the current OpenCCS implementation.



References

[1] Battre, D., Hovestadt, M., Kao, O., Keller, A., Voss, K.: Planning-based Schedul-
ing for SLA-Awareness and Grid Integration. In: Proc. of the 26th Workshop of
the UK PLANNING AND SCHEDULING Special Interest Group (PlansSIG2007)
(2007)

[2] Brune, M., Gehring, J., Keller, A., Reinefeld, A.: RSD - Resource and Service De-
scription. In: Proc. of 12th Intl. Symp. on High-Performance Computing Systems
and Applications (HPCS’98). pp. 193–206. Kluwer Academic Press (1998)

[3] OpenCCS Manual. https://www.openccs.eu (January 2017)
[4] Chlumský, V., Klusáček, D., Ruda, M.: The Extension of Torque Scheduler Al-

lowing the Use of Planning and Optimization in Grids. Computer Science 13(2),
5–19 (2012), http://dx.doi.org/10.7494/csci.2012.13.2.5

[5] Curino, C., Difallah, D.E., Douglas, C., et al.: Reservation-based Scheduling:If
You’re Late Dont Blame Us! Tech-report msr-tr-2013-108, Microsoft (2013)

[6] Hovestadt, M., Kao, O., Keller, A., Streit, A.: Scheduling in HPC Resource Man-
agement Systems: Queuing vs. Planning. In: Proceedings of the 9th Workshop
on Job Scheduling Strategies for Parallel Processing (JSSPP). pp. 1–20. Lecture
Notes in Computer Science, Springer Verlag (2003)

[7] Jyothi, S.A., Curino, C., Menache, I., et al.: Morpheus: Towards Automated SLOs
for Enterprise Clusters. In: Proc. of the 12th USENIX Symposium on Operating
Systems Desing and Implementation (OSDI’16 (November 2016)

[8] Kay, J., Lauder, P.: A Fair Share Scheduler. Communications of the ACM 31,
44–55 (1998)

[9] Kleban, S.D., Clearwater, S.: Fair share on high performance computing systems:
What does fair really mean? In: Proc. of 3rd IEEE International Symposium
on Cluster Computing and the Grid (CCGrid03). pp. 145–153. IEEE Computer
Society (2003)

[10] Lifka, D.A.: The ANL/IBM SP Scheduling System. In: D. G. Feitelson and L.
Rudolph (ed.) Proc. of 1st Workshop on Job Scheduling Strategies for Parallel
Processing. Lecture Notes in Computer Science, vol. 949, pp. 295–303. Springer
Verlag (1995)

[11] Mu’alem, A., Feitelson, D.G.: Utilization, Predictability, Workloads, and User
Runtime Estimates in Scheduling the IBM SP2 with Backfilling. In: IEEE Trans.
Parallel & Distributed Systems 12(6). pp. 529–543 (June 2001)

[12] PBSPro Open Source. http://www.pbspro.org (January 2017)
[13] PC2: Paderborn Center for Parallel Computing. https://pc2.uni-paderborn.de

(January 2017)
[14] Schneider, J., Linnert, B.: List-based Data Structures for Efficient Management

of Advance Reservations. Int J of Parallel Prog 42, 77–93 (2014), http://dx.doi.
org/10.1007/s10766-012-0219-4

[15] Torque. http://www.adaptivecomputing.com/products/open-source/torque/

(January 2017)
[16] Tumanov, A., Zhu, T., Park, J.W., et al.: TetriSched: global rescheduling with

adaptive plan-ahead in dynamic heterogeneous clusters. In: Proc. of the 11th
European Conference on Computer Systems (EuroSys’16) (April 2016), http:

//dx.doi.org/10.1145/2901318.2901355
[17] Vavilapalli, V.K., Murthy, A.C., Douglas, C., et al.: Apache Hadoop YARN: Yet

Another Resource Negotiator. In: Proc. of the 4th Annual Symposium on Cloud
Computing (SOCC’13) (October 2013), http://dx.doi.org/10.1145/2523616.
2523633


