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Abstract. We consider the problem of energy-optimally mapping a
set of moldable-parallel tasks in the steady-state pattern of a software-
pipelined streaming computation onto a generic many-core CPU archi-
tecture with a 2D mesh geometry, where the execution voltage and fre-
quency levels of the cores can be selected dynamically from a given set
of discrete DVFS levels. We extend the Crown Scheduling technique for
parallelizable tasks to temperature-aware scheduling, taking into account
the tasks’ heat generation, the heat limit for each core, and the heat dif-
fusion along the 2D mesh geometry of typical many-core CPU architec-
tures. Our approach introduces a systematic method for alternating task
executions between disjoint “buddy” core groups in subsequent iterations
of crown schedules to avoid long-time overheating of cores. We present
two integer linear program (ILP) solutions with different degrees of flex-
ibility, and show that these can be solved for realistic problem sizes with
today’s ILP solver technology. Experiments with several streaming task
graphs derived from real-world applications show that the flexibility for
the scheduler can be greatly increased by considering buddy-cores, thus
finding feasible solutions in scenarios that could not be solved otherwise.
We also present a fast heuristic for the same problem.

Keywords: Temperature-aware scheduling · Parallelizable tasks ·Many-
core CPU · Energy optimization · DVFS.

1 Introduction

Modern CMOS CPU chips are increasingly constrained by temperature. Lo-
cal hot spots such as permanently highly-loaded cores can become problematic
because higher temperature affects (static) power consumption negatively and
because very high temperatures accelerate the aging process of the hardware
(and excessively high temperatures will damage it immediately). Active cool-
ing, even if made adaptive, will thus have to consider the hottest spot (core)
on the chip at any time. Dynamic throttling by the operating system’s gover-
nor is completely unaware of application requirements. Instead, application-level
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temperature-aware scheduling can help to keep a high and more stable compu-
tation throughput across the chip while avoiding overheated cores.

In many cases, the problem of temperature-aware mapping a set of tasks to
cores for execution is handled as a dynamic (online) optimization problem. The
problem is made more complex by the fact that a high temperature of one core
also affects its neighbor cores (with a certain delay) due to heat diffusion on the
chip. This property can be used for passive cooling, in addition to local techniques
on the hot core itself, such as core DVFS-level downscaling or by pausing running
tasks. At the same time, the number of cores per chip continues to grow, also for
the foreseeable future. In combination with lower clock frequencies this calls for
leveraging parallelism inside tasks, using a parallel algorithm on multiple cores
to utilize available resources at limited frequency.

Streaming computations refer to data-parallel computations over large col-
lections of data where input data arrives as a stream of packets and operations
are organized as a directed acyclic graph of streaming tasks connected by FIFO-
buffered edges. This model, also known as Kahn process networks [13], allows
for pipelined execution of dependent operations over subsequent data packets
on different execution resources. We consider the steady-state pattern of such
software-pipelined computation of streaming tasks. By placing instances of pro-
ducer and consumer tasks operating on the same data in subsequent schedule
iterations, task instances in the same iteration can be considered independent. In
many soft-realtime applications, such as video processing, a specific (minimum)
data rate is required, translating into a (maximum) makespan for the schedule of
one iteration (or round). Hence, even with enough cores available for execution,
the heaviest task might be the performance bottleneck in the computation. For
such critical tasks, parallelization as well as selecting a high DVFS level (with
the negative impact on heat) are options that a static scheduler can exploit to
keep the throughput constraint. The schedule for the steady-state pattern should
thus be constructed to achieve the throughput goal with minimum power con-
sumption. Nevertheless, a large non-parallelizable task may have to run at the
highest DVFS level, which might lead to heat overload of its assigned core.

In this paper, we consider the problem of energy-optimally mapping a set
of moldable tasks (parallelizable tasks where the degree of parallelism is fixed
prior to execution) modeling the steady state pattern of a software-pipelined
streaming computation onto a generic many-core CPU architecture with a 2D
mesh geometry, where the voltage and frequency levels of the cores can be se-
lected dynamically from a given set of discrete DVFS levels, where a given upper
limit for the tolerable temperature on each core must be respected, and where
all tasks of one round of the steady state must be executed exactly once within
a given common deadline matching e.g. a required frame processing rate.

Our approach builds atop the Crown Scheduling technique [17, 18] for mold-
able streaming tasks. Crown scheduling leverages a recursive binary partitioning
of the set of p cores into a hierarchy of 2p − 1 core groups (called the crown,
cf. Figure 1) that become the only mapping targets for tasks, and hence restricts
core allocations of tasks to powers of 2. Also, the independent tasks of one round
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Fig. 1. A binary crown over p = 16 cores consists of 2p− 1 = 31 groups G0, ..., G30.

Fig. 2. 4×4 core mesh with 2D core index-
ing and organized as a 2D balanced binary
crown structure by recursive binary space
partitioning, where group 0 (root group,
G0) comprises all 16 cores, its child groups
indexed 1 to 2 contain 8 cores each, down
to the 16 leaf, i.e. single-core, groups.

are ordered by non-increasing core allocation, avoiding idle times between tasks
on the same core and decoupling DVFS scaling decisions of any non-overlapping
core groups in the crown. Earlier work has shown that restricting core allocation
to powers of 2 has only negligible effect on schedule quality in practice [17, 18],
but the reduction from 2p−1 to 2p−1 mapping targets cuts down problem com-
plexity considerably and makes even exact solutions of this complex optimization
problem by integer linear programming (ILP) feasible for relevant problem sizes.

We extend the crown scheduling technique to temperature-aware scheduling,
taking into account the tasks’ heat generation, the heat limit for each core,
and the heat diffusion along the 2D mesh geometry of typical many-core CPU
architectures. The 2D layout of the crown and the resulting core index mapping is
obtained by a recursive alternating binary space partitioning, as shown in Fig. 2
for a 4 × 4 core mesh. Hence, all crown subgroups will cover locally contiguous
2D subareas on the chip, and a group’s neighbor group to the left and right is
physically neighbored also in the 2D mesh network by the embedding.

For scenarios where the power and heat situation can be predicted accurately,
the ILPs can compute a static schedule prior to execution, which is then applied
for the complete mission time of the streaming application. For scenarios where
execution time is too short to warrant static scheduling with long scheduling
time, or where the heat situation changes during execution, a heuristic sched-
uler is presented that also applies the buddy core concept to adapt ILP-based
schedules. Here, ILP-based schedules can still serve as a reference to demonstrate
how close the heuristic comes to offline solutions.

This work makes the following technical contributions:

– We formalize the problem of energy-optimal, temperature-aware scheduling
of multi-variant moldable streaming tasks on a 2D many-core chip geometry
with DVFS, given a throughput requirement, and propose an extension of
crown scheduling [17, 18] for this problem.
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– We propose the buddy-core technique as a systematic method for alternating
tasks between disjoint core groups in subsequent iterations of crown sched-
ules to avoid long-time overheating of cores or core groups.

– We present two ILP-based solutions of the problem that leverage the buddy-
core technique with different degrees of flexibility, and show that it can be
solved for realistic problem sizes with today’s ILP solver technology. Ex-
periments with several streaming task graphs derived from real-world ap-
plications show that scheduler flexibility is greatly increased by considering
buddy-cores, especially in scenarios with tight deadlines and few/no DVFS
levels, thus finding feasible solutions in otherwise unsolvable scenarios.

– We also present a fast heuristic for the same problem and evaluate it with
the more flexible ILP solution as a baseline.

The remainder of this paper is organized as follows: Section 2 revisits related
work. Section 3 introduces our task and architecture models as well as crown
scheduling. Section 4 presents the buddy-core technique. Sections 5 and 6 present
ILP models with fixed and flexible buddy core selection, resp. Section 7 reports
on experimental results for ILP and heuristic scheduling, and Section 8 concludes
and proposes future work.

2 Related Work

Basically all existing literature of temperature-aware mapping and scheduling for
multi-core architectures focuses on sequential tasks, thus disregarding the effect
of optional parallelization for increasing flexibility and relaxing temperature hot
spots. Moreover, a number of approaches rely on dynamic techniques alone, i.e.
it is not clear how close they are to offline solutions.

Lu et al. [16] present a reinforcement learning-based approach for allocating
sequential tasks at runtime to cores of a network-on-chip manycore CPU depend-
ing on current core and router temperatures in an attempt to minimize maxi-
mum temperatures in the future. DVFS is not considered in this work. Coskun et
al. [6] design and evaluate OS-level dynamic scheduling policies with negligible
performance overhead. They do not consider parallel tasks. Rayan and Yu [20]
consider OS-level techniques for CPU throughput throttling for data centers to
keep CPU temperature below a certain threshold.

Bampis et al. [2] consider approximation algorithms for static and on-line
scheduling to minimize for makespan, maximum temperature or weighted av-
erage temperature. They consider non-multicore multiprocessors as target, i.e.,
spatial temperature diffusion between processors is not modeled. They assume
unit-sized tasks and use a simplified theoretical temperature model that assumes
that a processor’s temperature change per unit of time equals half the difference
between its previous processor temperature and the steady-state temperature of
the task. They do not consider DVFS nor energy optimization.

Chantem et al. [5] present a mixed integer linear program (MILP) for static
temperature-aware scheduling and mapping for hard real-time applications on
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MPSoCs with DVFS. Also their work only considers sequential tasks. Where
necessary, idle periods are inserted into the schedule to cool down a core before
the next task can be started safely. They also present a heuristic algorithm for
the same problem. But they do not consider moldable tasks and do not model a
2D many-core geometry nor spatial heat diffusion.

Jayaseelan and Mitra [12] consider temperature-aware dynamic scheduling of
a mix of soft real-time and best-effort tasks for single-core embedded processors.
They use an exponential function-based increase/decay model for temperature
changes depending on power, with the model parameters calibrated from simula-
tion experiments. Like our approach, they classify tasks into hot and cold tasks,
based on the sign of the difference of their steady-state temperature from the
maximum safe temperature at which a (hot) task still can be started. Hot and
cold tasks are kept in two separate queues, and the scheduler keeps dynamically
track of the share of CPU time that can be safely allocated to hot tasks. Voltage
scaling is used to control the trade-off between fairness and temperature safety,
by promoting down-scaled deadline-critical hot tasks to the cold queue.

The synthesis approach in Alkabani et al. [1] uses a linear programming
framework that searches the best N versions of the mapping and schedule, de-
ploys them together on the hardware platform and constructs a thermal-aware
rotational schedule that switches between these in order to balance the ther-
mal profile of the processor. Their experiments show a very low overhead and
an average 5% decrease in the steady-state peak temperature produced on the
benchmark designs compared to using a schedule that balances the amount of
usage of different modules.

Bao et al. [3, 4] consider temperature-aware dynamic voltage scaling in com-
bination with mapping and scheduling of single-threaded tasks and of idle time
intervals on a sequential CPU resp. on a multiprocessor to minimize the tempe-
rature-dependent share of energy (i.e., leakage energy). The technique leverages
the non-linearity of the temperature impact on leakage energy e.g. by equally
spreading out idle time in a schedule between tasks to maximize their cooling
effect, instead of closing up idle times to a single idle interval. Parallel tasks or
temperature diffusion in multicore architectures are not considered.

Pierson et al. [19] present mixed ILPs for optimizing energy consumption
or makespan of sets of jobs in a datacenter with heat constraints, taking into
account heat diffusion. Their jobs are only executed once, while we target a long
sequence of similar execution rounds for a streaming application.

3 Architecture and Application Model

All symbols and parameters introduced in this and the following sections are
summarized in Table 1.

3.1 Generic Multi-/Many-Core Architecture with DVFS

We consider a generic multi-/many-core architecture with 2D mesh layout of
p cores on the chip as introduced in Section 1. Each core can select its DVFS
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Table 1. Notation summary

symbol meaning

n number of tasks
nj number of task j’s variants
wj,v minimum parallelism degree for task j’s variant v
Wj,v maximum width of task j’s variant v
effj,v(q) parallel efficiency for task j’s variant v when run on q cores
p number of cores
s number of discrete core operating frequency levels
fk core operating frequency on frequency level k
fmin minimum core operating frequency
fmax maximum core operating frequency
Gl set of groups core l belongs to
M length of execution round
work(j, v) workload of task j’s variant v
Pow(j, v, k) core power consumption when running task j’s variant v at fre-

quency fk
time(q, j, v, k) runtime of task j’s variant v on q cores at frequency fk
E(q, j, v, k) energy consumption for execution of task j’s variant v on q cores

at frequency fk
xi,j,v,k binary ILP decision variable, =1 iff task j’s variant v is run in

core group i at frequency fk
size(i) number of cores in core group i
heat(l) = heat(u,w) core-local heat load of core l, i.e. core at position u,w in 2D grid
Heat(l) = Heat(u,w) overall heat load of core l, i.e. core at position u,w in 2D grid
α weight for net influx/outflux of heat to/from direct neighbor cores
β weight for net in-/outflux of heat to/from diagonal neighbor cores
maxHeat core heat limit
T0 room temperature
Pdiff (T ) additional power consumption for core at temperature T
hot l binary ILP decision variable, =1 iff core l is classified as hot core
sHeat(l) scaled overall heat load of core l
Chot hotness threshold
MinHeat minimum value of Heat(l)
MaxHeat maximum value of Heat(l)
γj reduction of buddy core group idle period, as fraction of buddied

task j’s duration
yi,j,k binary ILP decision variable, =1 iff task j runs in variant 0 in

core group i at frequency fk with buddying enabled
heatodd(l) continuous ILP decision variable, core-local heat load of core l in

odd rounds
heateven(l) continuous ILP decision variable, core-local heat load of core l in

even rounds
Heatodd(l) overall heat load of core l in odd rounds
Heateven(l) overall heat load of core l in even rounds
penalty(i, j) continuous ILP decision variable, penalty for execution of task j’s

variant 0 in core group i in the first round and subsequent execu-
tion of its variant V in a different core group in the second round

F (i) set of all groups sharing a core with group i
misscost(i, i′) penalty(i, j) for second-round group i′

ε weight for penalty term in objective function
LARGECONST a large constant
d deadline tightness factor
λj work(j, 0), i.e. workload of task j’s variant 0
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level dynamically (namely, between any two tasks) from a given set of s discrete
frequencies {f1 = fmin , ..., fs = fmax} in ascending order, applying voltage co-
scaling to always use the lowest voltage still applicable for a chosen frequency. We
make no assumptions about the power/energy cost function and its dependence
on the DVFS level; it could be measured by microbenchmarking on the target
system as in [9] or derived from a theoretical model, and becomes a set of constant
model parameters to our optimization, with power values indexed by frequency
level, temperature, and possibly instruction mix, i.e. task index.

One can simplify the table of power values by partitioning temperatures into
a small number of temperature ranges, and classifying instruction mixes into
task type categories. We will do especially the former by categorizing a core as
hot or cold. Following [3], the difference in power consumption between hot and
cold core is mostly due to static power difference and thus can be simplified to
a core type-specific constant.

A core that draws power produces heat, which influences its temperature and
the temperature of the nearby cores via heat diffusion. Thus, the temperatures
of a set of cores with given workloads can be derived by solving differential
equations. As a simplification, we will compute the heat flow between cores by
a discretized and linearized set of equations, to include this into the ILP.

3.2 Multi-variant Moldable Streaming Tasks

We consider a streaming task graph with n nodes or tasks as introduced in
Section 1. We assume multi-variant tasks where each task j (i.e., a node in the
streaming task graph) can have nj ≥ 1 different variants (j, 0), ..., (j, nj−1) that
might internally differ e.g. in the algorithm used, in the compiler options or in
settings of tunable parameters such as tile sizes.

Some of the task variants (j, v) of task j might be inherently sequential (mod-
eled by setting its maximum parallelism parameter Wj,v = 1), fully moldable
(Wj,v =∞) or partially moldable (Wj,v is given as some fixed maximum number
of cores). We also allow to define a minimum parallelism degree wj,v for each
task variant, which will be 1 in most cases but might be > 1 in special scenarios,
which we will exploit later. Moldable task variants (j, v) (i.e., Wj,v > 1) inter-
nally use a parallel algorithm that executes simultaneously on all cores assigned
to (j, v), and have an efficiency parameter table effj,v(q) that models its scala-
bility to q cores, with 1 ≤ q ≤Wj,v. The effj,v values can either be provided by
a performance model of the parallel algorithm within (j, v), or by measuring the
execution time of (j, v) for the different applicable values of q on the target3.

As an example, consider the binary stream merge tasks in parallel stream
mergesort where each task instance works on a pair of sorted input buffers to
merge. The binary merge functionality is usually implemented by the well-known
sequential merge algorithm, which performs work linear in the size of the input.

3 We assume that tasks are computation-bound, i.e. that task runtime is inverse to
core frequency, so that decisions on resource allocation and frequency scaling can be
separated. Extensions to memory-bound or communication-bound tasks are possible.
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Also parallel algorithms for merging are known [11], e.g. based on binary search,
which performs work O(N logN) for input buffer size N and also has higher
constant factors. As long as the root merger task (which is the performance bot-
tleneck in the merger tree pipeline because it has the highest data throughput)
still can be accommodated using DVFS scaling, the sequential merge variant
will usually be the most energy-efficient one. However, if the root merger can no
longer make the requested throughput rate but enough idle cores are available,
even an inefficient parallel variant might (have to) be preferred for it.

Each task variant (j, v) has a certain instruction mix that influences the core
power consumption for any given frequency level. To reduce complexity in ILPs,
one might combine similar power profiles and thus create task types.

3.3 Scheduling for the Steady State

As introduced in Section 1, to run a streaming task graph with a throughput of
X packets per second, every M = 1/X seconds one instance of the streaming
task graph must complete. Hence, each task must execute once within a round
of length M . As the tasks belong to different graph instances, they can be con-
sidered independent. The tasks communicate via the on-chip network, but as
the communication is from one round to the next, we assume that the on-chip
network’s delay is low enough and its capacity large enough to achieve this, and
leave modelling of the tasks’ communications on the on-chip network (and the
resulting energy consumption) as a subject of future work.

For each task, we must determine in which variant, with which possible width
and which frequency it will be executed. As the tasks are known beforehand,
this can be done prior to execution as static scheduling, which also arranges
the tasks such that a core never must execute two tasks simultaneously (non-
preemptive scheduling) and that all tasks complete before the deadline. Finally,
heat constraints have to be obeyed. Among all feasible schedules for such a
situation, we are interested in one with minimum energy consumption per round.

Yet, given all these constraints, there might not be any feasible schedule. For
such situations, there is the possibility of using a repeating sequence of differing
schedules [1], so that the sequence obeys all constraints (in particular the heat
constraints), while the sum of the schedules’ energy consumptions is minimized.
To achieve this, we will build on previous work.

Crown scheduling [17, 18] is a technique for resource allocation, mapping and
DVFS selection for a given set of independent moldable tasks, which is based on
a recursive partitioning of the set of p cores into up to 2p− 1 core groups jointly
referred to as the crown (see Figure 1), and requests that tasks are allocated and
mapped to entire such groups only, thus cutting down the complexity of possible
mapping targets of each task from up to 2p−1 in the unrestricted case to 2p−1. It
also requests that in a schedule, tasks are ordered by decreasing core allocation,
so that a parallelized task always starts simultaneously on the different cores it
is mapped to. Scheduling decisions are done such that all tasks complete before
the deadline and that cores’ energy consumption is minimized. Extensions of
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the crown scheduling technique for architectures with DVFS islands and with
multiple core types have been described in [14].

4 Temperature-Aware Crown Scheduling with Buddying

Some tasks may be considered by the scheduler as inherently hot yet they con-
stitute a performance bottleneck for the steady-state schedule, i.e., they might
be sequential and cannot be shortened by parallel processing, and they need to
run at the highest DVFS level to make the deadline constraint. For these tasks,
the only way to avoid thermal runaway on the cores they are mapped to is to
spread out execution in consecutive rounds over multiple cores in an alternating
fashion so that cores used in the previous round can cool down again during
idle periods in the following round. This alternation however requires that we
reserve sufficient capacity on a number of spare cores for these tasks. In general,
it would be wasteful to do a conservative a-priori reservation, so the decision
about such reservations needs to be made together with the other scheduling
decisions (i.e., core allocation, mapping, and DVFS level selection). We also re-
frain from a complex multi-round schedule with a cyclic migration scheme for all
tasks because this causes additional cache misses and overhead for many tasks,
and it also would increase scheduling complexity considerably. Instead, we use
one reserve core per core running a hot task, i.e., hot tasks lead to a duplication
of core allocation. This choice is only for simplification of presentation and can
be generalized to more than two-way alternation (preferably, by powers of 2).

The set of cores is first organized in pairs of physically neighbored cores
(“buddies”); w.l.o.g. let us assume these are pairs of neighbored odd and even-
indexed cores, only one of which will be used for a hot task at any time, and the
runtime system can toggle between a core and its “buddy core” for the execution
of a hot task between any two subsequent (hot) tasks whenever a core gets too
warm. Note that the “idle” buddy core is not necessarily idle for a complete
round but still runs at least all cool tasks that have been mapped to it, while
it will simply skip the instances of hot tasks that will be executed by its buddy
core instead. Because the buddies are physically neighbored and thus share most
cache levels, the penalty of switching between buddy cores for a hot task due
to additional cold misses in core-local cache levels will be relatively low. This
buddy-core concept can be generalized towards (non-root) groups in the crown.

Hence, in a crown schedule, any hot task must now be mapped twice, both
to a core group and to the group of their buddy cores, and hence its real core
allocation will be twice as large as for the ordinary cool tasks. Note that for hot
parallel tasks this applies to all cores it uses, i.e., the effective core allocation of
a hot task is twice its nominal allocation. In contrast, cool tasks will only receive
their nominal core allocation and be mapped once, as before.

We model this by defining a second task variant (j, 1) for each task j. The
original version of task j now becomes variant (j, 0). There might be more
variants of a task, e.g. using a different internal algorithm, but we will not
consider them in particular in the sequel. The new variant (j, 1) internally em-



10 C. Kessler et al.

ploys temperature-dependent alternation among buddy cores as described above,
it thus has the double values for minimum and maximum malleability4, i.e.,
wj,1 = 2wj,0 ≥ 2 and Wj,1 = 2Wj,0, and its efficiency parameters can be derived
accordingly as effj,1(2q) = effj,0(q)/2 for any q ≥ 1, which will affect time and
E (energy) parameters accordingly, see Sect. 5.1. Thus, a task in variant 1 can
simply be mapped by the crown scheduler to a group, and the runtime system
alternately uses one half of the group’s cores or the other in two succeedings
rounds. Variant (j, 1) is to be selected by the scheduler instead of (j, 0) if variant
(j, 0) with selected parallelism and DVFS level is considered too hot.

For greater flexibility we will allow also cold tasks to use the alternating
variant and hot tasks to use the non-alternating variant, and leave the choice to
a global optimizer, which we describe next.

5 ILP Model with Fixed Buddy Cores

5.1 Time and Energy

For a task variant (j, v) running on a core group with q cores at DVFS level
k, let time(q, j, v, k) denote the time and E(q, j, v, k) denote the overall energy
used by the task variant. These model parameter values can either be predicted
by a model or obtained by measuring energy for a microbenchmark modeling
the task type of task variant (j, v). For example, if sampled or predicted parallel
efficiency values for the parallel algorithm used in a moldable task are available,
the parallel execution time for the task can be modeled by

time(q, j, v, k) = work(j, v)/ (q · effj,v(q) · fk) . (1)

If Pow(j, v, k) is the (average) power consumption of a core when running
task variant (j, v) at frequency level k (the dependence on temperature will
be captured in Section 5.5), then the energy consumption of this task can be
modeled by

E(q, j, v, k) = q · time(q, j, v, k) · Pow(j, v, k) . (2)

5.2 ILP Solution Variables

Our ILP model uses binary variables xi,j,v,k = 1 iff variant v of task j is selected
and mapped to group i at DVFS level k.

5.3 Constraints

Allocation, Mapping and Scaling constraint Exactly one variant of each task
j must be selected and be mapped to exactly one core group and exactly one
DVFS level:

∀j :
∑
v,i,k

xi,j,v,k = 1 (3)

4 Core allocations must be multiples of 2, which is automatically preserved by crown
scheduling if wj,v ≥ 2.
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Also, a task variant (j, v) must at least receive its minimum core allocation
wj,v and not exceed its maximum core allocation Wj,v:

∀j, v, k : ∀i where size(i) < wj,v : xi,j,v,k = 0 (4)

∀j, v, k : ∀i where size(i) > Wj,v : xi,j,v,k = 0 (5)

Here size(i) denotes the number of cores in core group i. Note that we do not add
a constraint that forbids hot tasks to use the first (i.e., regular, non-alternating)
variant. This also eliminates the need to strictly define some criterion separating
hot and cold tasks from each other. In this way we leave it to the optimizer alone
to decide by its global view of the problem for which tasks the regular or the
alternating variant is more suitable.5

In general, the alternating variant of a task will be less energy-efficient than
the regular variant because it yields only half the performance from the used
resources at otherwise same settings (e.g., same DVFS level), and it will thus
only be selected by the optimizer where really necessary to meet the throughput
and temperature constraints below.

Throughput constraint Each core must complete its assigned tasks within the
given deadline M :

∀l :
∑
i∈Gl

∑
j,v,k

xi,j,v,k · time(size(i), j, v, k) ≤M, (6)

where Gl denotes the set of groups core l belongs to.

Temperature constraint The core-local heat load heat(l) = heat(u,w) of core
l = (u,w) is the sum over the energies of its assigned task variants, divided by
their accumulated time (in other words, it is the average power of core l over
one round):

heat(l) =

∑
i∈Gl

∑
j,v,k

xi,j,v,k · E(size(i), j, v, k)/size(i)

 /M. (7)

The overall heat load Heat(l) = Heat(u,w) of core l = (u,w) is given by its
local heat load plus the weighted heat differences to its direct neighbor core heat
loads, which models nearest-neighbor heat diffusion:

Heat(u,w) = heat(u,w) · (1− 4(α+ β))
+ α (heat(u−1,w) + heat(u,w−1) + heat(u,w+1) + heat(u+1,w))
+ β (heat(u−1, w−1) + heat(u−1, w+1) + heat(u+1, w−1)

+heat(u+1, w+1))

(8)

5 In (rather unlikely) borderline cases it could actually make sense to run even a
cold task in alternating mode to make it even colder, so that it can compensate for
the heat impact of a hot task on the same core(s) without having to use the more
inefficient alternating variant for that hot task.
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where 0 ≤ β < α � 1 are the weights that model the net influx/outflux of
heat to/from the core’s up to four corner and up to four direct neighbor cores,
respectively. For cores located on the chip boundary, i.e., u = 0 or u = q − 1
or w = 0 or w = q − 1, the above equation is adapted accordingly as not all
neighbor cores exist; for these non-existing neighbors the temperature difference
is assumed to be 0. We also note that α+ β < 0.25 because Heat values cannot
be negative. Note that, for simplicity, we do not model second-order effects in
heat diffusion, i.e., other cores more than one position away in a dimension do
not contribute to a core’s overall heat.

We require that the overall heat load of a core does not exceed its heat limit:

∀l : Heat(l) ≤ maxHeat (9)

5.4 Objective Function

We minimize the overall energy for the steady state, which is calculated as

E =
∑
i,j,v,k

xi,j,v,k · E(size(i), j, v, k) (10)

By running the ILP for different settings of the maxHeat parameter, we can
explore several thermal design options for a fixed-application embedded system.
For instance, a higher maxHeat value could be permitted if employing active air
cooling, which however also costs some energy overhead to drive the fan.

5.5 Temperature-Dependent Power Modeling

So far, the heat flow information has only been used to forbid situations where
cores may overheat. However, the core temperature also influences the core’s
power consumption. We use the Heat variables to guess the cores’ temperatures
and classify each core as cold or hot. This is a simplification because the heat
flow and thus the temperature may vary over a round, but as the Heat variables
only provide information summarized over a round, we cannot have more fine-
granular information on this basis. The use of only two categories hot and cold
is a further simplification, but can be extended to more categories.

According to [3], the temperature mostly influences static power consump-
tion. Thus, the power profile of a core, i.e. power consumption for each operat-
ing frequency for a given instruction mix and a core temperature equaling room
temperature T0, is shifted by a temperature-dependent constant Pdiff (T ) when
a higher core temperature T > T0 is assumed. Hence, to apply the knowledge
about core temperature within the above simplifications, the additional energy
for each hot core amounts to Pdiff (Thot) ·M .

Thus, we introduce p binary variables hot l where hot l = 1 iff core l is hot,
and adapt the target function by adding a term

∑
l hot l · Pdiff (Thot) ·M .

To set these binary variables, we scale the Heat variables to interval [0; 1] de-
noted by sHeat(see below), and define a threshold Chot ∈ [0; 1] that distinguishes
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between hot and cold cores via

hot l ≥ sHeat(l)− Chot (11)

hot l < 1 + sHeat(l)− Chot (12)

Constraint (11) forces hotl to 1 if sHeat(l) > Chot , constraint (12) forces hotl
to 0 if sHeat(l) ≤ Chot .

After deriving bounds MinHeat and MaxHeat for the scope of variables Heat,

sHeat(l) =
Heat(l)−MinHeat

MaxHeat −MinHeat
.

6 ILP Model with Arbitrary Buddies

In the ILP model of Section 5 we assumed that a fixed, nearest-neighbor core or
core group is predefined as the buddy core where buddying is necessary to avoid
long-term overheating of a core or core group. This implies that the buddy core
group always has the same width as the overheated core group. This restriction
can however be relaxed to increase the flexibility for the scheduler: the buddy
group could be any group, also narrower or wider than the overheated core group
to be offloaded, as long as these two groups do not intersect. In particular, we do
no longer request that the buddy cores are direct neighbors, i.e. in one common
group in the crown structure. Where a more distant group is selected as buddy
group for a task, we charge a certain time penalty for the expected increase in
cache misses and/or data movement costs compared to nearest-neighbor buddy
selection. Another requirement that can be relaxed is that the idle phase on the
buddy core group needs to be equally long as the buddied task—the idle phase
could also be shorter if that is already sufficient for cooling down the core.

We present a generalized ILP model that allows such arbitrary buddy selec-
tion. To do so, we extend the scope of optimization to two subsequent rounds
of the steady-state pattern, where we allow the idle period on the buddy group
to be shortened compared to the buddied task’s duration by up to a factor
0 < γ < 1 in one round.

We use the following decision variables:

– xi,j,v,k = 1 iff task j is executed in variant v ∈ {0, . . . , V } in core group i
at frequency level k. Variant 0 is the default variant, variant V is the buddy
core variant which is only available for the default variant. Variants 1 to
V − 1 (if available) are alternative variants for which no buddy variant is
necessary.

– yi,j,k = 1 iff task j is executed in variant 0 in core group i at frequency level
k and buddy cores are employed.

– heatodd(l) is the local heat load for core l in odd rounds.
– heateven(l) is the local heat load for core l in even rounds.
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– penalty(i, j) is the penalty for executing task j in the first round in variant
0 in core group i, when task j is executed in variant V , i.e. as a buddy task,
in the second round, in a different group i′.

The objective function (13a) is the sum of the energy consumption caused
by execution of tasks in two subsequent rounds and penalties for mapping tasks
and their buddy tasks to distant buddy cores. In the first (odd) round, buddy
variants V of tasks are not executed. In the second (even) round, variant 0 of
a task is only executed if the buddy variant V is not chosen. If V is chosen
(yi,j,k = 1), we therefore subtract energy for variant 0.

The optimization problem then reads as follows:

min
∑

i,j,v<V,k

xi,j,v,k · E(size(i), j, v, k) +
∑
i,j,v,k

xi,j,v,k · E(size(i), j, v, k)

−
∑
i,j,k

yi,j,k · E(size(i), j, 0, k) + ε ·
∑
i,j

penalty(i, j) (13a)

s.t. ∀j
∑

i,v<V,k

xi,j,v,k = 1, (13b)

∀j
∑
i,k

xi,j,V,k ≤
∑
i,k

xi,j,0,k, (13c)

∀i, j 1−
∑
k

xi,j,0,k ≥
∑

i′∈F (i),k

xi′,j,V,k, (13d)

∀j, v
∑

i:size(i)>Wj,v,k

xi,j,v,k = 0, (13e)

∀i, j, k yi,j,k ≥ xi,j,0,k +
∑
i′,k′

xi′,j,V,k′ − 1, (13f)

∀i, j, k yi,j,k ≤ xi,j,0,k, (13g)

∀i, j, k yi,j,k ≤
∑
i′,k′

xi′,j,V,k′ , (13h)

∀l
∑
i∈Gl

( ∑
j,v<V,k

xi,j,v,k · time(size(i), j, v, k)

+
∑
j,k

xi,j,V,k · time(size(i), j, V, k) · γj

)
≤M, (13i)

∀l
∑
i∈Gl

(∑
j,v,k

xi,j,v,k · time(size(i), j, v, k)

−
∑
j,k

yi,j,0,k · time(size(i), j, 0, k) · (1− γj)

)
≤M, (13j)
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∀i, j penalty(i, j) ≥

(∑
k

xi,j,0,k − 1

)
· LARGECONST

+
∑
i′,k

xi′,j,V,k ·misscost(i, i′), (13k)

∀i, j penalty(i, j) ≥ 0, (13l)

∀i, j penalty(i, j) ≤
∑
i′,k

xi′,j,V,k ·misscost(i, i′), (13m)

∀l

 ∑
i∈Gl,j,v<V,k

E(size(i), j, v, k)/size(i)

 /M = heatodd(l), (13n)

∀l

( ∑
i∈Gl,j,v,k

E(size(i), j, v, k)/size(i)

−
∑

i:l∈i,j,k

yi,j,k · E(size(i), j, 0, k)/size(i)

)
/M = heateven(l), (13o)

∀l (Heatodd(l) + Heateven(l))/2 ≤ maxHeat. (13p)

We apply the following constraints:

– general constraints:

(13b): Exactly one variant (either the default or an alternative one) must
be chosen for each task, and the task shall be mapped to one core group
at one frequency level (except for buddy core variant, see below).

– buddy constraints:

(13c): The buddy core variant may be used only in conjunction with the
default variant 0.

(13d): The buddy variant must not share cores with the standard variant
(i.e. variant 0). Here, F (i) denotes the set of all groups that share a core
with group i.

– width constraints:

(13e): We do not allocate a number of cores greater than the maximum
width of a task.

– throughput constraints:

(13f), (13g), (13h): y = 1 iff variant 0 is selected and buddying is enabled,
i.e. variant V is also selected.

(13i): The sum of task runtimes per core must not exceed the deadline in
odd rounds, i.e. for execution of the standard variant, where applicable.

(13j): The sum of task runtimes per core must not exceed the deadline in
even rounds, i.e. for execution of buddy core variant, where applicable.

– constraints for penalty terms:

(13k): If variant 0 is executed in group i and the buddy variant in group
i′, the penalty is misscost(i, i′), which is a constant that can be derived
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from measurements or microbenchmarks6. The large constant serves to
neutralize the constraint if variant 0 is not chosen.

(13l): The penalty cannot be negative.
(13m): If no buddy variant is planned for the execution of task j, there is

no penalty.

– thermal constraints:

(13n), (13o): The core-local heat load is the average power consumption of
a core in odd and even rounds, respectively.

(13p): The average overall core heat over odd and even rounds may not
exceed the maximum heat threshold. The definitions of Heatodd(l) and
Heateven(l) are in analogy to (8), and omitted for the sake of brevity.

7 Evaluation

In order to demonstrate the applicability of the proposed approach, we have con-
ducted experiments with two applications: parallel mergesort and H.263 encode.
The mergesort application consists of 15 tasks forming a tree-shaped task graph
as shown in Figure 3 (left). Moving towards the root, the workload is doubled at
each level. We assume that the individual tasks are executed sequentially. The
H.263 encode application originates from the Dataflow Benchmark Suite (DF-
bench) [7]. It comprises 9 tasks, the task graph is depicted in Figure 3 (right).
Some edges related to control flow had to be pruned to obtain an acyclic graph.
Again, a task itself is assumed to run sequentially.

By experiment, we mean that we compute a schedule by solving an ILP, and
consider the energy from the objective function the result of the experiment.
Previous experiments on real platforms have demonstrated that the ILP model
predicts energy consumption on real machines with sufficient accuracy [8, 9].
Thus, we do not perform a system simulation.

For our experiments, the deadline computation is inspired by [18]:

M = d ·
∑
j

λj

p·fmax
+
∑
j

λj

p·fmin

2
,

where d can be set to various values and thus enables control over deadline
tightness, and where λj = work(j, 0). The second parameter we vary for the
experiments is maxHeat, i.e. the per-core heat limit. For the two task sets
in question, we have examined all combinations of d and maxHeat for d ∈
{2.2, 2.5, 3.0, 3.5, 4.0} and maxHeat ∈ {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}, which
amounts to 45 distinct parameter settings in total. Decreasing d tightens the
deadline and serves to find the point where normal Crown scheduling is not able
to find a feasible schedule while Crown scheduling with buddy cores still is. Sim-
ilarly, decreasing maxHeat increases sensitivity to overheating, and thus helps to

6 If the penalty might differ between tasks, then the misscost table could be further
indexed by the task index.
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Fig. 3. Left: task graph for the mergesort application. Right: task graph for the H.263
encode application.

find the point where the cores get too hot to find a feasible schedule with using
buddy cores.

For each task set, we compare scheduling with buddying to regular crown
scheduling under heat constraints. For the latter case, we add constraints ∀j :∑
i,k xi,j,1,k = 0 to prohibit the use of buddy cores.

Furthermore, we have performed experiments for two different ways of mod-
eling thermal behavior, which is represented by the values of α and β. We set
α = β = 0 to consider core-local heat only, whereas α = 0.1, β = 0.05 models
heat diffusion to neighboring cores. For all experiments, we assume p = 16 and an
architecture which exhibits the power characteristics of the ARM big.LITTLE,
cf. [9]. As we base our experiments on a homogeneous architecture, we adopt
the values for the big cores only. We have implemented the ILP in Section 5 in
Python with the gurobipy package and subsequently employed the Gurobi 8.1.0
solver. All scheduling computations were performed on an AMD Ryzen 7 2700X
with 8 cores and SMT.

Our primary interest lies in determining whether the buddy core concept
enables us to retrieve feasible solutions where otherwise deadlines are too tight
or heat constraints too restrictive to produce a feasible schedule. The results
for the mergesort task set are displayed in Figure 4. On the left hand side, only
core-local heat is considered, while the results on the right hand side feature heat
diffusion to neighboring cores. The plots show for which value combinations of
d and maxHeat a feasible solution exists. If feasible schedules exist with and
without buddying, both have the same energy consumption. It becomes clear
immediately that a significantly wider range of parameter combinations can
be covered with the buddy core concept. When looking at core-local heat only,
making use of buddy cores leads to successful accommodation of tighter maxHeat
constraints for each value of d. In the scenario where heat diffusion to neighboring
cores is assumed, there is no need for buddy core execution at longer deadlines
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for the examined values of maxHeat. This does not come as a surprise since
heat diffusion mitigates heat spikes at individual cores, especially when the heat
load is distributed heterogeneously among the cores as is the case here due to
the number of cores exceeding the number of tasks. A similar behavior can be
observed for the H.263 encode task set, cf. Figure 5, although enabling buddy
cores pays off more substantially even in the heat diffusion case, where feasible
solutions for more restrictive heat constraints can be found for all but the tightest
and the most loose deadlines.

Figure 6 shows corresponding results for an architecture without DVFS, i.e.,
all tasks run at the same (high) frequency (here, 1.6 GHz). Deadlines and the
values for maxHeat correspond to the original experiments in Figures 4 and 5,
respectively. By comparing the diagrams, it is easy to see that the benefit of
using buddy cores is strongest in this scenario with no DVFS.

Figure 7 shows that with heat diffusion included in the model (which reduces
heat stress on cores due to the cooling effect of their direct neighbors) and flexible
buddy selection (cf. Section 6) enabled, feasibility is still increased by buddying.

There are cases (such as H.263 encode for deadline factor 2.5 and maxHeat
0.3 or mergesort for deadline factor 2.2 and maxHeat 0.3 or deadline factor
2.5 and maxHeat 0.2) where flexible selection of buddy cores enables a feasible
solution when none exists with fixed buddy selection only. In these cases the
penalty is accepted in order to select non-neighbored buddy cores and thereby
be able to keep the maxHeat constraint.

In an additional set of experiments, we have sought to determine the influence
of γ. To this end, we have set γ ∈ {0.1, 0.5, 1.0} for both the H.263 encode and
the mergesort task set. The smaller γ gets, the more chances the scheduler has to
place tasks on the idle buddy core, but this also reduces the time for this core to
cool down. The values chosen represent both ends of the spectrum plus a value
in-between. Experiments were performed for the same parameter combinations of
deadline factor and maxHeat as for the earlier experiments. For both task sets, no
difference in the number of feasible solutions could be established. Presumably,
this is due to large sequential tasks. The only option is to increase frequency to
the maximum. If the deadline is still violated, the value of γ is irrelevant as no
other task variants would be mapped to those cores.

In another experiment, we stressed the temperature-aware ILP crown sched-
uler with a set of n = 8 sequential tasks and tight deadline and a 4 × 4 core
CPU with α = 0.05, β = 0, penalty = 0. With buddying disabled and the heat
limit chosen so that it is just feasible, we obtain a checkerboard mapping, which
is expected as it maximizes the self-cooling effect due to unused cores. For a
buddying-enabled scenario with n = 4 the ILP crown scheduler of Sect. 6 yields
an alternating checkerboard schedule with alternation between different white
fields in odd and even rounds if tightening the heat limit even more.

As an alternative to the ILP-based approach, we have devised a simple heuris-
tic algorithm applying the buddy core concept to a temperature-unaware sched-
ule which turns out infeasible when considering temperature constraints ex-post.
The heuristic starts from a schedule generated by converting a scheduler for mal-
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Fig. 4. Value combinations of d and maxHeat for which a feasible solution exists for
the mergesort task set. Left: core-local heat only, right: heat diffusion to neighboring
cores.
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Fig. 5. Value combinations of d and maxHeat for which a feasible solution exists for the
H.263 encode task set. Left: core-local heat only, right: heat diffusion to neighboring
cores.
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Fig. 6. Value combinations of d and maxHeat for which a feasible solution exists for
the mergesort task set (left) and for the H.263 encode task set (right), respectively, on
an architecture with no DVFS (i.e., all tasks run at the same frequency, here 1.6GHz).
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Fig. 7. Value combinations of d and maxHeat for which a feasible solution exists with
heat diffusion modeled and flexible buddy selection (Sect. 6) enabled for the mergesort
task set (left) and for the H.263 encode task set (right), respectively, with DVFS
enabled. Other settings: γ = 1.0, α = 0.1, β = 0.05, Heat is the arithmetic mean of
Heat for odd and even rounds of the steady-state pattern, no penalty is charged for
the “natural” fixed buddy cores from Sect. 5.

leable, pre-emptive tasks and continuous frequencies to moldable tasks and dis-
crete frequencies [15]. Alternatively, it may set out from a temperature-unaware
crown schedule generated by the ILP (or heuristic) described in [18]. The heuris-
tic then applies the temperature model to identify cores that would become too
hot. For each such core, it linearly searches for a free core to be used as a buddy
resource for all tasks of the overheated core. If at some point there is no free
core left although one were required to be designated buddy, the heuristic im-
mediately terminates without a feasible solution. If on the other hand each core
in need of a buddy is assigned one, the heuristic again checks whether there re-
main cores which become too hot. Accordingly, either a feasible solution has been
found, or the heuristic did not manage to alter the original solution in such a way
that it is ultimately feasible. We have conducted experiments for the mergesort
and H.263 encode task sets, with DVFS enabled and α = β = 0 (i.e. assuming
no heat diffusion to neighboring cores). The heuristic encounters a feasible solu-
tion in exactly those cases where the ILPs of Sections 5 and 6 deliver one. This
holds true for both kinds of original schedules, the temperature-unaware crown
schedules as well as the schedules produced by the heuristic.

Finally, we demonstrate that temperature-aware scheduling may lead to
higher energy efficiency compared to temperature-agnostic scheduling when em-
ploying a temperature-dependent power model. We set d = 3, maxHeat = 0.4,
and assume Pdiff (Thot) = 0.5 W based on Figure 1 in [10]. Figure 8 shows
the energy consumption predicted by the scheduler for temperature-aware and
temperature-agnostic scheduling under various hotness threshold values Chot . It
can be noted that hotness thresholds have to be rather high (0.7 for the merge-
sort task set and 0.9 for the H.263 encode task set) for energy efficiency not to
improve when performing temperature-aware scheduling. What is more, lower
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Fig. 8. Predicted energy consumption under various hotness threshold values. Left:
H.263 encode task set, right: mergesort task set.

values of Chot may decrease energy consumption by up to 43.8% (H.263 encode)
or 57.8% (mergesort) with regard to temperature-agnostic scheduling.

8 Conclusion and Future Work

We addressed the problem of deadline-constrained, energy-efficient temperature-
aware scheduling of moldable tasks on a many-core CPU with a 2D mesh ge-
ometry. We introduced the buddying technique as an additional, software-only
configuration option for tasks to control energy and temperature of cores. We
integrated the buddying technique into heuristic and (crown-)optimal schedulers
for moldable tasks. Our experimental results indicate that buddying adds flexibil-
ity to the scheduler to significantly improve the chances for finding a feasible so-
lution in temperature-constrained scenarios, compared to temperature-unaware
scheduling. Future work will comprise experiments with further streaming task
graphs and validations by execution on real platforms, as well as extensions of
the buddying concept to heterogeneous platforms and e.g. by allowing task and
buddy task to use different task variants.
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