
Learning-based Approaches to Estimate

Job Wait Time in HTC Datacenters

Luc Gombert and Frédéric Suter

IN2P3 Computing Center / CNRS, Lyon-Villeurbanne, France
firstname.lastname@cc.in2p3.fr

Abstract. High Throughput Computing datacenters are a cornerstone
of scienti�c discoveries in the �elds of High Energy Physics and Astropar-
ticles Physics. These datacenters provide thousands of users from dozens
of scienti�c collaborations with tens of thousands computing cores and
Petabytes of storage.
The scheduling algorithm used in such datacenters to handle the millions
of (mostly single-core) jobs submitted every month ensures a fair sharing

of the computing resources among user groups, but may also cause un-
predictably long job wait times for some users. The time a job will wait
can be caused by many entangled factors and con�guration parameters
and is thus very hard to predict. Moreover, batch systems implementing a
fair-share scheduling algorithm cannot provide users with any estimation
of the job wait time at submission time.
Therefore, we investigate in this paper how learning-based techniques
applied to the logs of the batch scheduling system of a large HTC dat-
acenter can be used to get an estimation of job wait time. First, we
illustrate the need for users for such an estimation. Then, we identify
some intuitive causes of this wait time from the information found in the
batch system logs. We also formally analyze the correlation between job
and system features and job wait time. Finally, we study several Machine
Learning algorithms to implement learning-based estimators of both job
wait time and job wait time ranges. Our experimental results show that
a regression-based estimator can predict job wait time with a median
absolute percentage error of about 54%, while a classi�er that combines
regression and classi�cation assigns nearly 77% of the jobs in the right
wait time range or in an immediately adjacent one.

1 Introduction

High Energy Physics and Astroparticles Physics experiments are heavy con-
sumers of computing resources. Numerical simulations of physical processes gen-
erate massive amounts of data that are compared to data produced by detectors,
satellites, or telescopes. The analysis and comparison of these experimental and
simulated data allow physicists to validate or disprove theories and led to major
scienti�c discoveries over the last decade. In 2012, two experiments running on
the Large Hadron Collider (LHC) at CERN, both observed a new particle which
is consistent with the Higgs boson predicted by the Standard Model. In 2016,

the LIGO and VIRGO scienti�c collaborations announced the �rst observation
of gravitational waves which con�rmed the last remaining unproven prediction of
general relativity. In both cases, these observations were awarded a Nobel Prize.

A characteristic shared by many physics experiments is that their comput-
ing models rely on single-core but numerous, and sometimes very long lasting,
jobs, e.g., Monte-Carlo simulations and data analyses, to obtain scienti�c results.
Then, this scienti�c community bene�ts more of High Throughput Computing
(HTC) than High Performance Computing (HPC).

The Computing Center of the National Institute of Nuclear Physics and
Particle Physics (CC-IN2P3) [21] is one of the thirteen Tier-1 centers in the
Worldwide LHC Computing Grid (WLCG) engaged in the primary processing
of the data produced by the LHC. About 2,500 users from more than 80 scien-
ti�c collaborations share nearly 35,000 cores to execute a large HTC workload
of about 3 million jobs per month. These resources are managed by Univa Grid
Engine [23] which implements the Fair Share Scheduler [10] and thus assigns
priorities to all the unscheduled jobs to determine their order of execution. HTC
jobs being in a vast majority single-core jobs, scheduling is much easier than
with parallel jobs in HPC systems. The main operational objectives are to max-
imize resource utilization and ensure that every group is served according to its
expressed resource request for the year.

In a previous study we showed that two distinct sub-workloads are executed
at CC-IN2P3 [2]. Some jobs are submitted by a small number of large user
groups through a Grid middleware, at a nearly constant rate and with an im-
portant upstream control of the submissions while Local users from about 60
di�erent groups directly submit their jobs to the batch system. We also showed
that the jobs submitted by Local users su�er from larger wait times than Grid
jobs. Job wait time can even become unpredictably long for some users and
is caused by many entangled factors and con�guration parameters. It is thus
very hard to predict and may lead to a poor Quality of Service. Moreover, the
Fair-Share scheduling algorithm cannot provide users with any estimation of job
wait time at submission time as other scheduling algorithms, e.g., Conservative
Back�lling [15], can do.

In this work we investigate how learning-based techniques applied to the logs
of the batch scheduling system of a large HTC datacenter can be used to provide
users with an estimation of the time their jobs will wait when they submit them.
While this study focuses on the speci�c con�guration and workload of the CC-
IN2P3, we believe that our �ndings can be straightforwardly applied to other
large HTC datacenters involved in the WLCG that show common characteristics.
To this end, we make the following contributions:

� Motivate the need for a job wait time estimator.
� Identify some intuitive causes of the job wait time.
� Formally analyze the correlation between job and system features and job
wait time.

� Propose a learning-based estimator of job wait time and a classi�er in wait
time ranges.

The remaining of this paper is organized as follows. Section 2 presents the
related work. We analyze in Sect. 3 the distribution of the job wait time and
detail some of its intuitive causes. In Sect. 4 we confront these intuitive causes to
the correlation of job wait time with job and system features. Section 5 details
the proposed learning-based approaches and presents our experimental results.
We discuss the applicability of the proposed work to other workloads in Sect. 6.
Finally, Section 7 summarizes our �ndings and outlines future work directions.

2 Related Work

Knowing when a job will start when it is submitted, and thus for how long
it will wait in a queue, is a long-time concern, and a well-studied problem,
for batch-managed datacenters. This is even more important when users have
access to more than one datacenter. Then, job wait time becomes an important
component of a meta-scheduling process to decide where to submit a job. The
Karnak service [18] was for instance deployed on TeraGrid to predict job wait
time within a certain con�dence interval for the di�erent sites composing the
infrastructure, before or once a job is submitted. Karnak maintains a database
of job features, system state, and experienced wait time and then derives a
prediction for a new job by �nding similar entries in this database. This approach
is referred as Instance Based Learning [12,13]. Another technique is to predict
job wait time as a range (e.g., between 1 and 3 hours), for instance by using
a k-Nearest Neighbors algorithm to select similar instances and then re�ne the
prediction using Support Vector Machines [11]. In addition to these similarity-
based approaches, some works directly use job and/or system features to predict
upper bounds [4], by matching distributions, or ranges [9], using a Naive Bayes
classi�er, for job wait time. Another approach consists in de�ning job templates,
leveraging the similarity of a new job with historical information to estimate
its runtime, and then simulate the behavior of the batch scheduling algorithm
to derive the wait time of each job [19,20]. However, such a simulation-based
approach is too compute-intensive to build an online estimator.

In this work, we apply Machine Learning (ML) techniques to both job and
system features to determine into which of the prede�ned time ranges the wait
time of a new job will fall. Moreover, all the aforementioned works consider HPC
workloads where the size of a job, in terms of both number of cores/nodes and
requested runtime, play an important role in job wait time. Indeed, the more
cores a job requests, the harder it is to �t in a schedule, hence the longer it may
wait. Moreover, long jobs are bad candidates for back�ll. Here, we consider a
HTC workload made of a vast majority of single-core jobs scheduled with no
back�ll. Then, the causes of job wait time are completely di�erent in our case.

3 Wait Time Distribution and Intuitive Causes

To understand the causes of job wait time, we analyze the workload executed
on the resources of the CC-IN2P3 over 23 weeks from Jun. 25, 2018 to Dec. 2,

26.9 % 29.3 % 33.6 % 10.2 %

0.00

0.05

0.10

0.15

0.20

0.25

10s 1m 5mn 30mn 3h 9h 1d 3d 1w 1mo
Job wait time

D
en

si
ty

Fig. 1. Probability Density Function of Local job wait time.

2018. This corresponds to a stable period during which nearly 35,000 cores were
made available to the users. This workload is composed of 7,749,500 Grid jobs
and 5,748,922 Local jobs, for a total of 13,498,422 jobs. Hereafter we focus only
on the Local jobs, as they experience larger wait times than Grid jobs [2].

Figure 1 shows the Probability Density Function (PDF) of Local job wait
time. For the sake of readability, we used a logarithmic scale on the x-axis and
highlighted four regions. The labels at the top of the graph show the respective
percentage of jobs in each region.

The leftmost region corresponds to jobs that start almost right after their
submission, i.e., within a minute. It represents more than one fourth of the total
workload. For these jobs, and the users who submitted them, the Quality of
Service is very good. Jobs in the second to left region experience a wait time
between 1 and 30 minutes, which can be seen as reasonable. Indeed, users are
asked to submit jobs whose requested runtime is at least of one hour. These two
regions combined amount for 56.2% of the submitted Local jobs.

What really motivates this work are the remaining two regions. We can see
on Fig. 1 that the job wait time of about one third of the workload spans from
30 minutes to 9 hours following a lognormal distribution. Then, it is hardly
possible for users whose jobs fall into this category to guess when they will start.
However, having an estimation of this delay may have a direct impact on their
working behavior [17]. If a user knows that their job will start within the next
hour, and also knows for how long this job will last, they may want to wait for
the job completion before submitting other jobs. Conversely, if the user knows
the job will not start before several hours, they can proceed with other activities
and come back the next day to get the results. For the jobs in the last category,
which amount for 10% of the workload, a wait time of more than nine hours
corresponds to a poor Quality of Service experienced by the users.

The Quality of Service experienced by the users, i.e., the job response time,
does not only depend on how much time the job waits but also on its execution

time. For instance, a wait time of two hours does not have the same impact
whether the job lasts for one hour or one day. The bounded slowdown metric [5]
captures this impact of job wait time on the response time. Using a bound on job
execution time of 10 minutes, this metric indicates that 25% of the jobs in the
third (resp. fourth) region wait between 3.2 and 8.5 (resp. 10.6 and 58.6) times
their execution times. By further analyzing the distribution of job execution
time, we observed that more than half of the jobs in these two regions run for
less than 3 hours, and nearly 75% complete in less than 6 hours. Job wait time
is thus not only unpredictable but can also be highly detrimental to users.

To understand which of the many di�erent and entangled factors and con-
�gurations parameters can cause large job wait times, we propose to answer to
the four following basic questions:

Who submits the job? Each entry in the logs of the batch system corre-
sponds to a job and comprises two �elds that allow us to identify which user

from which user group is submitting a job: owner and group. According to the
resource allocation policy of the CC-IN2P3 and the pledges made by the scienti�c
collaborations for the year [1], each user group is allocated a share of the total
available computing power proportional to its needs. This de�nes a consumption
objective used by the job scheduler to compute its fair-share schedule.

What is the job requesting? A job is mainly characterized by the time the
user estimates it will run and the memory it will need. These quantities are
expressed at submission time by setting hard or soft limits through �ags provided
by the batch system. If a job hits a hard limit, it is killed and its results are
lost. Using a soft limit allows the job to catch a signal before being killed,
and thus to react accordingly. Time can be expressed as an expected runtime
(i.e., s_rt and h_rt �ags) or CPU time (i.e., s_cpu and h_cpu �ags), both
expressed in seconds. Memory can be expressed as a resident set size (i.e., s_rss
and h_rss �ags) or virtual memory size (i.e., s_vmem and h_vmem �ags), both
in bytes. If no value is given for these �ags, default values depending on the
submission queues are applied. Users can also specify the number of cores, or
slots in the UGE terminology, and whether the job requires a speci�c resource,
e.g., access to a given storage subsystem, database, or licensed software. To
prevent the saturation of these critical resources or the violation of licenses, the
batch administrators set up several limits as Resource Quota Sets (RQSs). These
limits can be applied globally or on a per group basis and change over time.

When is the job submitted? The batch system logs submission times as
timestamps from which the hour and day of submission can easily be derived.

Where is the job submitted? During the considered time period, jobs could
be submitted to 6 di�erent scheduling queues that mainly di�er by maximum
allowed duration, both in terms of runtime and CPU time, available memory
and scratch disk space per job, and the type of jobs allowed to enter the queue,
i.e., single- or multi-core. The bulk of the Local jobs is directed to the generic
long queue while the others can accommodate jobs with special needs. This
queue can access to almost all the available cores but has a rather low priority.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Week night

Week day

Week evening

Weekend night

Weekend day

0

500

1000

1500

2000

1 3 5 7 9 11 13 15 17 19 21 23
Time of day

A
vg

. n
um

be
r

of
 jo

bs
 s

ub
m

itt
ed

 p
er

 h
ou

r ●

●

Business days
Weekend

Fig. 2. Daily submission rate for Local jobs on business days or during the weekend.

By analyzing all this information we identify some intuitive causes of why a job
would wait more than another that we detail hereafter. The �rst two identi�ed
causes come from when a job is submitted.

3.1 Submission Period

Fig. 2 shows the daily submission rate for Local jobs. We distinguish �ve di�erent
periods in this graph. First, there are much less submissions during the weekend
than over the rest of the week, with a slight day/night di�erence. Then, on
business days, e.g., Monday to Friday, we clearly see more submissions during
the working hours than over night. We also distinguish a "Week evening" period
whose submission rate is between those of the working hours and the night.
Such a submission pattern is classical and representative of most HTC and HPC
centers. As more concurrent job submissions obviously lead to more competition
for resources, we can suppose that a job submitted during a week day is likely
to wait more than a job submitted in around midnight or on a Sunday morning.

3.2 Number of Pending Jobs in Queue

The number of jobs already waiting in queues can also in�uence job wait time. To
illustrate this, we focus in Fig. 3 on a typical 5-day period. The top graph shows
the evolution of the total number of pending slot requests while the bottom
graph displays how many jobs are waiting for a certain amount of time in each
period. For the sake of readability, we sampled the logs using a 3-hour range,
but a more detailed sampling con�rmed our observations.

We can see two consequences of an increase of the number of pending jobs on
job wait time. First, when a burst of submission occurs in the long queue, e.g.,
on Monday between 8 and 9 AM or on Wednesday around noon, we observe a
dramatic increase of job wait time with many jobs waiting for more than twelve
hours. Second, when a burst of submission occurs in another queue, e.g., on

0

5000

10000

15000

N
um

be
r

of
 r

eq
ue

st
ed

 s
lo

ts

Local jobs in 'long' queue

All jobs

0

5000

10000

Sat. 09/08 Sun. 09/09 Mon. 09/10 Tue. 09/11 Wed. 09/12 Thu. 09/13

N
um

be
r

of
 jo

bs
 w

ai
tin

g
fo

r

Less than 1 hour

Between 1 and 12 hours

More than 12 hours

Fig. 3. Evolution of the number of requested slots by jobs waiting in queue (top).
Distribution of wait time for local jobs in each 3-hour period (bottom).

Tuesday around noon, we also observe an increase of the number of jobs waiting
between one and twelve hours. This can be explained by the fact that the burst
happens in a queue of higher priority which causes delays for a large fraction
of the jobs submitted to the less priority long queue. This focus outlines the
importance of taking the system state into account at the queue and global
levels when estimating job wait time.

3.3 Share Consumption

The concept of shares is at the core of the scheduling algorithm ran by UGE.
First, it allows the batch system to give higher priorities to jobs submitted by
user groups with bigger needs. With nearly 80 user groups to serve, whose size
and needs are very heterogeneous, the allocated shares cover a wide range of
values with di�erences up to two orders of magnitude between some groups.
Then, a job submitted by a user from a small group with a small share is likely
to wait more than a similar job from another larger group with a bigger share.

The scheduling algorithm also takes into account the recent resource con-
sumption, over a sliding time window, of the di�erent groups. If a user group
starts to submit jobs after a period of inactivity, these jobs will get a priority
boost. Conversely, a group that consumed a lot of resources over a short period
of time will get some priority penalty. Finally, if a group consumed all its allo-
cated share, its jobs will be executed if and only if there are still some resources
available once jobs from the other groups are scheduled. Our job wait time esti-
mator thus has to consider the initial share allocated to a group, which fraction
of it has already been consumed, and the recent resource consumption of the
group to estimate whether a job will be delayed or not.

3.4 Quotas on Resource Usage

A job can also see its wait time increase, sometimes dramatically, because of the
di�erent quotas, or RQSs, set by the administrators of the batch system. If a
RQS is violated, at any level, jobs are blocked in queue until the quota violation
is solved. We illustrate the impact of such quotas on job wait time in Fig. 4
with the extreme case of a single user who submitted more than 2,000 jobs in
one minute on Nov. 14, 2018 at 6:20PM. The vertical line shows the submission
burst while each black segment represents the execution of a single job.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

0

500

1000

1500

2000

0 24 48 72 96 120 144
Hours since submission time

Jo
b

id

Fig. 4. Execution span of jobs submitted by a single user limited by a stringent RQS.
The verticle line shows the submission burst and each black segment represents the
execution of a job.

We can see that all the submitted jobs cannot start at once, but are executed
by batches of 90 jobs, which corresponds to the limit applied to the group of this
user on how many jobs requesting access to a speci�c storage subsystem can run
concurrently. The direct consequence of this stringent quota (which was later
increased and eventually removed) is that the last jobs wait for nearly six days
before starting their execution. We can conclude from this example that quota
violations must be taken into account by our estimator.

3.5 Resource Requests

Finally, the study of the related work presented in Section 2 showed that the re-
source requests made by a job, in terms of runtime, number of cores, or memory,
can have a great impact on job wait time. However, this observation is valid for
HPC systems where jobs can have di�erent shapes and back�ll mechanisms are
implemented by the batch system. In the speci�c context of HTC datacenters
such as CC-IN2P3, the vast majority of the jobs are single-core. Then, the pro-
duced schedule is almost free of idle times which makes back�lling meaningless.
Moreover, the queue con�guration neither re�ects nor leverages the fact that
14% of the jobs express a runtime of less than 6 hours and 41% of less than 24
hours. Time and memory requests should nevertheless be taken into account but
their impact is expected to be smaller than for traditional HPC workloads.

4 Job Features Correlation Analysis

In the previous section we identi�ed a set of intuitive causes of job wait time.
To con�rm them, we extracted a set of job and system features related to these
causes from the information available in the logs and conducted a detailed pair-
wise correlation analysis of these features. This allowed us to merge the eight
metrics related to the requested time and memory into only two features. We
also replaced the day and hour of submission features by the �ve categories
from Fig. 2 (i.e., week day, week evening, week night, weekend day, and week-
end night). Finally, we made a Primary Component Analysis (PCA) on eleven
features describing the system state. This analysis allows us to keep 99.98% of
the observed variance with only four generated features. We veri�ed that these
modi�cations did not imply an important loss of information or accuracy. The
obtained reduced set of features that directly derive of our analysis of the in-
tuitive causes of job wait time is summarized in Table 1. We will use them to
design the learning-based job wait time estimators detailed in the next section.

4.1 Spearman's Rank Correlation of Numerical Features

To determine the in�uence of each of our numerical job and systems features,
we compute their respective correlation with job wait time. As the distribution
of several of these features is heavy-tailed or comprises outliers, we favor the
Spearman's rank correlation over the traditional Pearson correlation. Moreover,
this allows us to detect monotonic relationships beyond simple linear relation-
ships. In our case, the values of each pair of features X and Y are converted
to ranks rX and ry and the Spearman correlation coe�cient ρ is computed as
the covariance of the rank variables divided by the product of their standard
deviations. Figure 5 shows the obtained coe�cients for the nine numerical job
and system features.

Requested Slots

Requested Memory

Requested Time

Share Consumption

SPS RQS Consumption

PCA 1st Component

PCA 2nd Component

PCA 3rd Component

PCA 4th Component

What System Configuration System State

0.0

0.1

0.2

0.3

0.4

Spearman
Correlation

Fig. 5. Spearman correlation of numerical features with job wait time.

As expected, the job resource requests have almost no in�uence on job wait
time in HTC datacenters. Conversely, the most impacting features are the system
state and the current RQS and share consumption of the job owner's group. The
other features have only a moderate impact.

T
a
b
le
1
.
L
ist

o
f
jo
b
a
n
d
sy
stem

fea
tu
res

d
eriv

ed
fro

m
th
e
b
a
tch

sy
stem

lo
g
s
a
n
d
th
e
a
n
a
ly
sis

o
f
in
tu
itiv

e
ca
u
ses.

N
a
m
e

D
e
s
c
r
ip
tio

n
T
r
a
n
s
fo
r
m
a
tio

n
T
y
p
e

W
h
o

J
o
b
O
w
n
er

N
a
m
e
o
f
th
e
u
ser

w
h
o
su
b
m
itted

th
e
jo
b

A
n
o
n
y
m
iza

tio
n

C
a
teg

o
rica

l

U
ser

G
ro
u
p

G
ro
u
p
to

w
h
ich

th
e
jo
b
ow

n
er

b
elo

n
g
s

A
n
o
n
y
m
iza

tio
n

C
a
teg

o
rica

l

W
h
a
t

R
eq
u
ested

N
u
m
b
er

N
u
m
b
er

o
f
co
res/

slo
ts
n
eed

ed
b
y
th
e
jo
b

N
o
n
e

N
u
m
erica

l
o
f
S
lo
ts

R
eq
u
ested

S
to
ra
g
e

J
o
b
n
eed

s
a
ccess

to
S
P
S
,
H
P
S
S
,
o
r
i
R
O
D
S

N
o
n
e

B
o
o
lea

n
S
u
b
sy
stem

R
eq
u
ested

T
im
e

M
a
x
im
u
m

C
P
U
tim

e
([
s
,
h
]
_
c
p
u
)
o
r
ru
n
tim

e
([
s
,
h
]
_
r
t
).

F
u
sio

n
N
u
m
erica

l
D
efa

u
lt
to

th
e
q
u
eu
e
lim

its
w
h
en

n
o
va
lu
e
is
sp
eci�

ed
.

R
eq
u
ested

M
em

o
ry

M
a
x
im
u
m

resid
en
t
([
s
,
h
]
_
r
s
s
)
o
r
v
irtu

a
l
([
s
,
h
]
_
v
m
e
m
)

F
u
sio

n
N
u
m
erica

l
m
em

o
ry.

D
efa

u
lt
to

th
e
q
u
eu
e
lim

its
w
h
en

n
o
va
lu
e
is
sp
eci�

ed
.

W
h
e
n

S
u
b
m
issio

n
P
erio

d
P
erio

d
w
h
en

th
e
jo
b
is
su
b
m
itted

(i.e.,
w
eek

{
d
ay,

ev
en
in
g
,
n
ig
h
t}

C
o
m
p
u
ted

C
a
teg

o
rica

l
a
n
d
w
eek

en
d
{
d
ay,

n
ig
h
t}
)

W
h
e
r
e

Q
u
eu
e
N
a
m
e

N
a
m
e
o
f
th
e
su
b
m
issio

n
q
u
eu
e

N
o
n
e

C
a
teg

o
rica

l

S
h
a
re

C
o
n
su
m
p
tio

n
C
u
rren

t
rela

tiv
e
reso

u
rce

co
n
su
m
p
tio

n
o
f
th
e
u
ser

g
ro
u
p
a
t
th
e

C
o
m
p
u
ta
tio

n
N
u
m
erica

l
S
y
s
te
m

su
b
m
issio

n
tim

e
o
f
th
e
jo
b

C
o
n
�
g
u
r
a
tio

n
R
Q
S
C
o
n
su
m
p
tio

n
C
u
rren

t
co
n
su
m
p
tio

n
o
f
th
e
R
eso

u
rce

Q
u
o
ta

S
et

o
f
th
e
u
ser

g
ro
u
p

C
o
m
p
u
ta
tio

n
N
u
m
erica

l
a
t
th
e
su
b
m
issio

n
tim

e
o
f
th
e
jo
b

S
y
s
te
m

S
ta
te

P
C
A
C
o
m
p
o
n
en
ts

N
u
m
b
er

o
f
jo
b
s
cu
rren

tly
w
a
itin

g
to

b
e
ex
ecu

ted
o
r
ru
n
n
in
g
a
t

P
C
A

N
u
m
erica

l
g
ro
u
p
,
q
u
e
u
e,
a
n
d
g
lo
ba

l
lev

els

4.2 Regression-based Correlation for all Features

We propose to determine the impact of the additional categorical and boolean
features (i.e., job owner, user group, requested storage, submission period, and
queue name), by computing their correlations with job wait time with a regres-
sion tree. Indeed, Pearson and Spearman correlation computation methods are
respectively based on linear and isotonic regressions. The regression method con-
sists in splitting our data set and trying to maximize the variance between the
subsets. It is particularly suited for categorical variables and can also handle the
other numerical features. Figure 6 presents the obtained correlation values with
a regression tree of depth eight.

User Group

Job Owner

Queue Name

Requested Slots

SPS

iRODS

HPSS

Requested Memory

Requested Time

Share Consumption

SPS RQS Consumption

Submission Period

PCA 1st Component

PCA 2nd Component

PCA 3rd Component

PCA 4th Component

Where System Configuration System State

Who What When

0.00

0.25

0.50

Correlation

Fig. 6. Correlations of all features with job wait time.

Among the categorical features, the most in�uential category is related to
who submitted the job. This is rather logical as the numerical feature with the
highest Spearman's rank correlation is the RQS consumption that de�nes the
most stringent constraints at group level.

A more surprising result is that Requested Time becomes the most in�uen-
tial feature according to this second correlation computation method, while its
Spearman's rank correlation was pretty low. This can be explained by the limited
number of requested time values that are provided by users. Indeed, each value
corresponds to a small set of well-de�ned jobs always submitted by the same
users with the same submission habits. Therefore, these are more likely to wait
for similar amounts of time. A known drawback of this correlation computation
method is that the algorithm learns on the same data it tries to predict. This
causes an over-�tting of the regression which in turn leads to a good correlation
factor for this feature. This is even ampli�ed by users who do not indicate any
particular requested time. In that case, the queue limits are used as default value
and this information thus also includes knowledge about the submission queue
and its relative priority. The observed high correlation between Requested Time

and Job Wait Time may thus be arti�cial. However, cautiously using it in the
training of our estimators can still be bene�cial. While it could cause similar

biases for estimators based on a decision tree, this can also allow us to detect
recurring behaviors related to certain users and leverage this knowledge to im-
prove the prediction accuracy. This can be seen as a bad practice from a Machine
Learning theory point of view but the practical interest cannot be neglected.

5 Learning-based Job Wait Time Estimators

This section presents how we apply Machine Learning techniques to pre-
processed batch system logs to provide users with an estimation of the time
their jobs will wait when they submit them. We �rst introduce the form taken
by this estimation and the performance metrics used to estimate its quality in
Section 5.1. Then we detail and discuss in Section 5.2 the ML algorithms con-
sidered to produce this estimation, while the obtained experimental results are
presented in Section 5.3.

5.1 Objectives and Performance Metrics

Our �rst objective is to predict the time a job will wait as a single value based
on the features of the newly submitted job and a training on a set of previously
executed jobs for whom the wait time is known. However, this kind of estimation
can quickly become inaccurate for several reasons. As shown in Fig. 1, about
56% of the jobs in the considered workload start less than 30 minutes after
their submission and nearly 30% wait only for a few seconds. For such quick

starter jobs [11] an estimation can easily be largely o� without giving a useful
information to the user. Moreover, the large number of features describing a job
and the diversity of experienced wait times for jobs with similar features make it
di�cult to obtain a very accurate estimation. However, most users do not need
an exact estimation of job wait time but would rather be interested in knowing
a time range in which they can expect to see their job start. Then, we de�ne
in Table 2 eight wait time ranges. We also show the percentage of Local jobs
belonging to each of these ranges in the original workload.

Table 2. Target wait time ranges.

Class Wait Time Range Workload fraction

1 Less than 30 minutes 56.21%

2 30 minutes to 2 hours 15.96%

3 2 hours to 4 hours 8.88%

4 4 hours to 6 hours 4.85%

5 6 hours to 9 hours 3.90%

6 9 hours to 12 hours 2.44%

7 12 hours to 24 hours 5.14%

8 more than 24 hours 2.61%

The �rst and dominant range corresponds to the fusion of the two leftmost
regions of Fig. 1. Ranges 2 to 5 allow us to provide users whose jobs fall in the
third region (30 minutes to 9 hours) with a more accurate estimation of the job
wait time. Ranges 6 to 8 have the same purpose for jobs in the rightmost region
that wait for more than nine hours.

To select the candidate ML algorithms to build our job wait time estimator,
we rely on two complementary performance metrics. The learning time measures
the time taken by an algorithm to process the entire set of historical data and
build its prediction model. It mainly depends on the complexity of the algorithm
itself and the size of the input data set. As the learning phase has to be done
periodically to ensure keeping a good predictive power, this learning time has to
remain reasonable. Then, we arbitrarily decided to set an upper limit to twenty
four hours and discard candidate algorithms that need more time to learn. The
prediction time is the time needed by an algorithm to infer the wait time of a
newly submitted job. As we aim at returning the produced estimation to the
user right after the submission of a job, we will favor the fastest algorithms and
discard those taking more than two minutes to return an estimation.

To evaluate how close the predictions of the job wait time are to the observed
values and be able to compare the accuracy of the considered ML algorithms
we rely on the classical Absolute Percentage Error (APE) metric de�ned as

100× |yi−ŷi|
yi

for i ∈ 1, . . . , n jobs, where yi and ŷi are the logged and predicted
wait time of job i. However, this metric is known to be very sensitive to small
logged data and to produce many outliers, so we will focus on the median and
inter-quartile range of the distribution of this metric.

To evaluate the accuracy of the classi�cation in wait time ranges, we analyze
the confusion matrices produced by the di�erent ML algorithms. A confusion
matrix C is de�ned such that Ci,j is the number of jobs whose wait time is
known to be in range i and predicted to be in range j. We not only measure the
percentage of jobs classi�ed in the right range or in an adjacent range, but also
the capacity of the algorithm to class jobs in every available ranges.

5.2 Job Wait Time Estimators

Our two objectives correspond to two classical applications of Supervised Learn-

ing. Estimating the exact time a newly submitted job will wait is a regression

problem while determining to which wait time range it will belong is a typical
classi�cation problem. Multiple ML algorithms can be used to solve each of these
two problems. They mainly di�er from the tradeo� made between the time to
produce a result and the accuracy of that result. In addition to the constraints
on the learning and prediction times expressed in the previous section, the size
of our data set raises another constraint on the amount of memory needed to
perform the regression. This discards some methods such as the Logistic and
Multivariate regression methods or the Least Absolute Shrinkage and Selection
Operator (LASSO) [22] that would require several Terabytes of memory.

We selected four regression-based algorithms among the implementations
made available by the Scikit-learn toolkit [16] to estimate the wait time of a

newly submitted job. The linear regression method is very fast to train and to
return an estimation. However, it can be inaccurate when the relationship be-
tween features is not linear, which is the case for our data set. The Decision Tree

regression [14] is a recursive partitioning method which is also fast but better
handles data variability and categorical features. However, the depth of the tree
has to be carefully chosen: if too shallow, the estimation will be inaccurate, while
if too deep, there is a risk of data over-�tting. We also consider two ensemble
learning methods which consist in combining several weak learners to achieve a
better predictive performance. AdaBoost [7] starts by assigning an equal weight
to the training data and computes a �rst probability distribution. It then itera-
tively boosts the weight of the mis-predicted instances to improve the accuracy
of the �nal estimation. However, this method is known to be sensitive to noisy
data and outliers. The Bagging [3] method consists in generating multiple train-
ing sets by uniform sampling with replacement of the initial data. Then, a weak
learner is �tted for each of these sets and their results are aggregated to pro-
duce the �nal estimation. For both ensemble methods, we use a decision tree of
variable depth as weak learner and split the training set into 50 subsets.

To solve our classi�cation problem in wait time ranges, we follow two di�er-
ent approaches. The former consists in simply applying a classical classi�cation
algorithm to directly assign jobs in the di�erent ranges from Table 2, while in
the latter we �rst solve the regression problem of estimating the exact wait time
of a job and then straightforwardly derive the wait time range for the job. We
rely on the same families of algorithms as for solving the regression problem, i.e.,
Decision Tree, AdaBoost, and Bagging, but replace the basic Linear Regression
method by a simple probabilistic classi�er, i.e., Naive Bayes. For the Ensemble
methods we use a Decision Tree classi�er of variable depth as base estimator.

5.3 Experimental Evaluation

To evaluate the quality of a ML algorithm, the common approach is to split the
initial data set into two parts. First, the algorithm has to be trained on a large
fraction of the data set, typically 80%. Second, the evaluation of the performance
of the algorithm is done on the remaining 20%. As our data are time-ordered, we
cannot randomly pick jobs to build these two subsets. Indeed, when a new job
enters the system, information is available only for jobs that have been completed
before its submission. Consequently, our training set corresponds to the �rst 80%
of the logs and the evaluation is done on the last 20%.

Leaning and Prediction Time We start by comparing in Fig. 7 the learning
and prediction times of the candidate ML algorithms. For the Decision Tree and
Ensemble methods, we consider di�erent tree depths, while we have a single value
for the Linear Regression and Naive Bayes approaches. We also distinguish the
use of these algorithms to solve our regression and direct classi�cation problems.
These timings were obtained on one of the servers of the CC-IN2P3 equipped
with a 40-cores Intel Xeon Silver 4114 CPU running at 2.20GHz.

Regression Classification

Learning
P

rediction

4 8 12 4 8 12

10

100

1000

1

3

10

30

Tree Depth

T
im

e
(in

 s
ec

on
ds

)

Bagging DecisionTree AdaBoost Bagging DecisionTree LinearRegression

Fig. 7. Learning and prediction times of the di�erent ML algorithms.

We can see that the Ensemble methods require much more time to be trained
and produce an estimation than the basic regression and classi�cation methods.
The use of a deep Decision Tree is a good compromise with a training time of
less than two minutes and only a few seconds to return a prediction.

Accuracy of Algorithms for the Regression Problem To evaluate the
accuracy of the four ML algorithms used to solve the regression problem, we
�rst have to determine what is the best tree depth for three of them. Figure 8
shows the evolution of the median Absolute Percentage Error with the depth of
the tree. The dashed line corresponds to the accuracy of the Linear Regression.

50

75

100

200

400

600

2 4 6 8 10 12 14
Tree depth

M
ed

ia
n

A
bs

ol
ut

e
P

er
ce

nt
ag

e
E

rr
or

 (
in

 %
)

AdaBoost

Bagging

DecisionTree

Fig. 8. Evolution of the Median Absolute Percentage Error with tree depth for jobs
waiting for more than 30 minutes. The dashed line corresponds to the Median APE of
the Linear Regression method.

0

100

200

300

400

500

[30mn − 2h[[2h − 4h[[4h − 6h[[6h − 9h[[9h − 12h[[12h − 24h[>= 24h
Wait time range to which jobs belong

A
bs

ol
ut

e
P

er
ce

nt
ag

e
E

rr
or

 (
in

 %
)

Fig. 9. Distribution of the Absolute Percentage Error achieved by a Decision Tree
Regressor of depth 7 for jobs in di�erent wait time ranges.

As APE leads to very large values for very short waiting times, the presented
medians have been computed only for the jobs that waited for more than 30
minutes, i.e., about half of the initial workload.

The accuracy achieved by the AdaBoost algorithm is much worse than those
of the others, because of its sensitivity to variable and noisy data. The Bagging
and Decision Tree algorithms have very close accuracy and evolution along with
the tree depth, but Decision Tree is much faster. We also see that the basic
Linear Regression is on par with the more complex algorithms. However, we
also measured the Absolute Error (in seconds) for the short-waiting jobs. We
observed similar trends as in Fig. 8 for all algorithms but also a clear advantage
of Decision Tree (median of 1h12 at depth 7) over Linear Regression (median of
2h20). Based on these results, we select a Decision Tree Regressor of depth 7 as
our regression-based job wait time estimator.

We complete this evaluation of the accuracy of the regression-based approach
by analyzing the distribution of the APE in the di�erent wait time ranges we
target for the classi�cation problem. Figure 9 shows this distribution for the
selected Decision Tree Regressor of depth 7. We can see that the median APE
is consistent across the di�erent ranges and remains in the reasonable range of
[26.8%; 76.6%]. We also see that the values of the third quartile and top whisker
(i.e., 1.5 the inter-quartile range from the third quartile) tend to decrease as
the job wait time grows. This means that the quality of the prediction becomes
slightly better for long job wait times, i.e., where users need to know the most
that they have to expect long delays.

Accuracy of Algorithms for the Classi�cation Problem Table 3 evaluates
the accuracy of the four direct classi�cation methods we consider and that of
the alternate approach that �rst solves a regression problem and then classi�es
the obtained predictions in wait time ranges. The accuracy is measured as the
percentage of jobs that are classi�ed either in the correct time range or in a
directly adjacent one and the sum of these two values.

Table 3. Accuracy of the di�erent classi�cation algorithms.

Method Correct Adjacent Combined

Naive Bayes 44.57% 19.55% 64.12%

Ada Boost (Depth 11) 44.81% 29.59% 74.40%

Decision Tree (Depth 9) 49.73% 19.55% 75.19%

Bagging (Depth 9) 47.08% 28.28% 75,36%

Reg. + Clas. (Depth 8) 22.26% 54.65% 76.92%

There is no clear winner among the four direct classi�ers, with a di�erence
of 5.16% of jobs classi�ed in the right time range between the best (Decision
Tree) and worst (Naive Bayes) algorithms. If we add the jobs classi�ed in a
directly adjacent time range, the Bagging algorithm becomes slightly better than
the Decision Tree. The alternate approach (Reg. + Clas.) leads to more mixed
results. It classes much less jobs in the correct time range but achieves the best
percentage overall when including the adjacent ranges. However, these coarse
grain results hide some important characteristics of the produced classi�cations.
To better assess the respective quality of each algorithm, we study the confusion
matrices for the di�erent algorithms.

Figures 10 shows the confusion matrix for the Naive Bayes classi�er and reads
as follows. The tile on the sixth column of the third row indicates the percentage
of jobs whose measured wait time was between 2 and 4 hours (third range) that
have been classi�ed in the [9h -12h[time range (sixth range). Then, the sum of
the tiles on each row is 100%. The panel on the right of the confusion matrix
indicates for each row the percentage of jobs that have been classi�ed in the
correct range or in an immediately adjacent one.

99.96%

100%

100%

100%

100%

100%

100%

100%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0.04%

0%

0%

0%

0%

0%

0%

0%

>
=

 2
4h

[1
2h

 −
 2

4h
[

[9
h

−
 1

2h
[

[6
h

−
 9

h[
[4

h
−

 6
h[

[2
h

−
 4

h[
[3

0m
n

−
 2

h[
<

 3
0m

n

< 30mn [30mn − 2h[[2h − 4h[[4h − 6h[[6h − 9h[[9h − 12h[[12h − 24h[>= 24h
Predicted

M
ea

su
re

d

99.96%

100%

0%

0%

0%

0%

0%

0%

0.500.751.001.251.50

Fig. 10. Confusion matrix of the Naive Bayes classi�er.

74.47%

45.94%

30.23%

16.16%

24.62%

32.66%

23.01%

31.72%

19.19%

35.35%

36.43%

24.76%

20.42%

24.22%

23.58%

26.9%

4.28%

10.38%

13.87%

22.88%

14.4%

11.59%

1.83%

3.93%

0.77%

1.46%

2.55%

1.46%

5.16%

2.49%

2.9%

8.14%

0.58%

2.6%

6.35%

13.98%

2.5%

5.75%

2.61%

0.1%

0.3%

0.36%

2.36%

3.69%

3.61%

5.47%

5.41%

0.02%

0.39%

3.83%

6.34%

14.71%

25.83%

14.26%

40.61%

29.2%

0.02%

0.08%

1.88%

2.36%

3.46%

3.56%

0.04%

0%

>
=

 2
4h

[1
2h

 −
 2

4h
[

[9
h

−
 1

2h
[

[6
h

−
 9

h[
[4

h
−

 6
h[

[2
h

−
 4

h[
[3

0m
n

−
 2

h[
<

 3
0m

n

< 30mn [30mn − 2h[[2h − 4h[[4h − 6h[[6h − 9h[[9h − 12h[[12h − 24h[>= 24h
Predicted

M
ea

su
re

d

93.66%

91.68%

52.84%

38.32%

11.27%

25.48%

46.07%

29.2%

0.500.751.001.251.50

Fig. 11. Confusion matrix of the AdaBoost classi�er.

We can see that almost all the jobs are classi�ed in the �rst time range (i.e.,
less than 30mn). Then, the apparent good results of this method in Table 3
actually mean that Naive Bayes correctly classi�es only jobs in that �rst range,
which are dominant in our test set, but fails for all the jobs in other time ranges.

Figure 11 shows that while not being as binary as Naive Bayes, the AdaBoost
classi�er su�ers from a similar bias and tends to classify too many jobs in one
of the �rst two ranges (i.e., less than 30mn and from 30mn to 2 hours). In other
words, this methods largely underestimates the wait time for most of the jobs.
Then, the percentage of jobs classi�ed in the right time range or an adjacent one
clearly drops as soon as jobs wait for more than two hours.

87.63%

62.5%

38.03%

16%

26.36%

30.39%

12.74%

8.57%

8.06%

17.95%

18.42%

13.25%

5.95%

9.34%

5.83%

8.22%

1.87%

7.48%

8.93%

2.78%

1.59%

1.7%

2.05%

0%

1.09%

2.66%

18.06%

46.14%

21.79%

1.48%

32.04%

7.17%

0.49%

2.26%

1.27%

2%

4.06%

5.83%

11.21%

25.62%

0%

0%

0%

0%

0%

0%

0%

6.41%

0.74%

6.68%

14.71%

19.45%

36.19%

39.15%

29.59%

0%

0.13%

0.47%

0.58%

0.38%

4.06%

12.11%

6.54%

44.01%

>
=

 2
4h

[1
2h

 −
 2

4h
[

[9
h

−
 1

2h
[

[6
h

−
 9

h[
[4

h
−

 6
h[

[2
h

−
 4

h[
[3

0m
n

−
 2

h[
<

 3
0m

n

< 30mn [30mn − 2h[[2h − 4h[[4h − 6h[[6h − 9h[[9h − 12h[[12h − 24h[>= 24h
Predicted

M
ea

su
re

d

95.69%

87.93%

45.41%

50.92%

25.85%

44.98%

36.13%

44.01%

0.500.751.001.251.50

Fig. 12. Confusion matrix of the Decision Tree classi�er at depth 9.

78.86%

54.96%

37.72%

15.93%

27.45%

31.37%

11.16%

8.25%

17.71%

27.58%

19.95%

16.04%

6.39%

9.3%

7.37%

7.9%

0.83%

6.41%

7.44%

1.98%

1.47%

2.01%

2.05%

0%

1.01%

2.55%

17.98%

45.54%

23.26%

2.47%

32.43%

7.17%

0.28%

1.34%

0.56%

0.33%

0.33%

3.6%

10.83%

25.62%

0%

0%

0%

0%

0%

0%

0%

6.4%

1.29%

6.69%

15.81%

19.86%

35.04%

37.68%

31.42%

31.88%

0.01%

0.46%

0.54%

0.31%

6.06%

13.57%

4.74%

12.77%

>
=

 2
4h

[1
2h

 −
 2

4h
[

[9
h

−
 1

2h
[

[6
h

−
 9

h[
[4

h
−

 6
h[

[2
h

−
 4

h[
[3

0m
n

−
 2

h[
<

 3
0m

n

< 30mn [30mn − 2h[[2h − 4h[[4h − 6h[[6h − 9h[[9h − 12h[[12h − 24h[>= 24h
Predicted

M
ea

su
re

d

96.58%

88.95%

45.37%

47.85%

23.59%

41.28%

36.16%

44.65%

0.500.751.001.251.50

Fig. 13. Confusion matrix of the Bagging classi�er at depth 9.

The �rst two columns of the confusion matrices for the Decision Tree (Fig. 12)
and Bagging (Fig. 13) classi�ers also show that they greatly underestimate the
wait time of many jobs. However, they lead to slightly better predictions than
AdaBoost as they are both able to correctly classify more jobs in the fourth (4 to
6 hours) and eighth (more than 24 hours) ranges.

The last confusion matrix shown in Fig. 14 is that obtained for when we
classify the predictions made by a Decision Tree Regressor of depth 8. First, it
explains why this approach leads to only 22.26% of correct predictions overall,
while the direct classi�ers are above 44%. This is mainly caused by the results
for the shortest time range. Most of the jobs that actually waited for less than 30

2.12%

0.29%

0.05%

0%

0%

0%

0%

0.04%

84.81%

63.01%

26.17%

8.15%

10.48%

11.46%

11.01%

7.58%

7.37%

18.38%

29.44%

23.41%

17.95%

18.17%

10.95%

7.17%

2.37%

6.8%

19.18%

37.35%

34.72%

9.37%

39.48%

3.76%

0.13%

1.66%

0.6%

0.3%

2.48%

2.26%

0.01%

0.94%

0.09%

0.92%

9.85%

11.88%

14.42%

23.5%

16.16%

0%

1.64%

7.59%

11.87%

12.35%

13.89%

27.2%

11.34%

35.58%

1.46%

1.35%

2.84%

6.56%

6.07%

8.06%

11.05%

44.91%

>
=

 2
4h

[1
2h

 −
 2

4h
[

[9
h

−
 1

2h
[

[6
h

−
 9

h[
[4

h
−

 6
h[

[2
h

−
 4

h[
[3

0m
n

−
 2

h[
<

 3
0m

n

< 30mn [30mn − 2h[[2h − 4h[[4h − 6h[[6h − 9h[[9h − 12h[[12h − 24h[>= 24h
Predicted

M
ea

su
re

d

86.93%

81.68%

74.79%

61.06%

51.62%

52.95%

38.55%

80.5%

0.500.751.001.251.50

Fig. 14. Confusion matrix of the Regression + Classi�cation approach.

minutes are predicted to wait between 30 minutes and two hours, hence classi�ed
in the second range. We further analyzed the distribution of the predicted job
wait time in that particular time range and saw that nearly half of these jobs
were predicted to wait for only 38 minutes.

Another main di�erence of this confusion matrix with those of the direct
classi�ers is that a very small number of jobs are classi�ed in the �rst range.
Instead, we observe a better distribution of the predictions along the diagonal of
the matrix. A direct consequence is that the percentages of jobs in the correct
time range or an adjacent one, shown by the right panel, are much better and
more stable with this method.

To summarize, when the proposed Regression + Classi�cation approach fails
to predict the right time range, it generally deviates from only one class, hence
the best overall accuracy in Tab. 3. We thus propose to use this original method
to implement a job wait time prediction service for the users of the CC-IN2P3.

6 Applicability to Other Workloads

The work presented in this paper is tightly coupled to a speci�c workload pro-
cessed at a speci�c computing center. One can thus ask whether the proposed
methodology and presented results can be transposed to another computing cen-
ter. We discuss this legitimate question in this section.

The IN2P3 Computing Center is a large scale High Throughput Computing

Center implementing a Fair-share scheduling algorithm con�gured with schedul-
ing queues, resource quotas, and priorities that processes a workload composed
of a vast majority of single-core jobs with a utilization close to 100%. Note that
such a settings is at least representative of the twelve other large computing cen-
ters worldwide involved in the processing of the data produced by the LHC and
the rest of the associated computing grid. This represents hundreds of smaller
scale computing centers dealing with similar workloads and sharing similar con-
�gurations of their infrastructures and working habits. The proposed study can
thus be rather straightforwardly applied to these computing centers.

Going from a High Throughput Computing Center to a High Performance
Computing Center will have an impact on the typology of the submitted jobs, i.e.,
more parallel jobs, but also on the scheduling algorithm, i.e., EASY/Conservative
back�lling instead of Fair-Share. We already mentioned in Sect. 4 that it will
change the correlation between associated resource requests and job wait time,
hence impact the results. However, some features will remain very similar, such
as the di�erence of usage and priorities between user groups, submission pat-
terns [6], or the in�uence of quotas or of the current state of the system.

We believe that these similarities and di�erences do not compromise the
soundness of the methodology we followed in this work, which can be applied to
any workload or con�guration: i) Analyze the workload and review the system
con�guration; ii) Identify what could be intuitive causes for a job to wait; iii)
Con�rm these intuitions by determining correlations of job and system features
with job wait time; iv) Compare the time to learn and predict and the accuracy

of several ML algorithms; and v) Question the obtained results by looking at
them from di�erent angles. To ensure the reproduction and further investigation
of the presented results, as well as the adaptation of the proposed methodology
to another context, we prepared an experimental artifact that comprises the
anonymized batch logs and metadata, and all the data preparation scripts, calls
to ML algorithms, and obtained results in a companion document [8].

7 Conclusions and Future Work

The Quality of Service experienced by users of a batch system mainly de-
pends on the time submitted jobs wait before being executed. However, in High
Throughput Computing datacenters whose batch system implements the Fair-
Share scheduling algorithm, this job wait time can quickly become unpredictable
and range from a few seconds to several hours, or even days in some patholog-
ical cases. Therefore, we proposed in this article to leverage Machine Learning
techniques to provide users with an estimation of job wait time. To this end, we
analyzed 23 weeks of logs of the batch system of the IN2P3 Computing Center,
the main French academic HTC datacenter. First, we identi�ed some intuitive
causes of the job wait time and determined its formal correlation with sixteen
job and system features. Then, we compared four Machine Learning algorithms
to either determine an estimation of the wait time or a wait time range for each
newly submitted job.

We found out that the best tradeo� between learning and prediction times
and accuracy to solve the regression problem of estimating the job wait time
was achieved by a Decision Tree Regressor of depth seven. It allows us to obtain
consistent and relatively good estimations in only a few seconds, hence enabling
a direct return to users at submission time. We also observed that the direct
classi�cation of jobs in wait time ranges led to imperfect results, with a severe
underestimation of the wait time for a majority of jobs. The imbalance of the
workload with more than 50% of quick starter jobs may be the main cause of
the observed results by creating a bias in the training of the algorithm. However,
we also showed that classifying the jobs thanks to a regression-based estimation
of their wait time led to more promising results with nearly 77% of the jobs
assigned in the right wait time range or in an immediately adjacent one.

As future work, our �rst task will be to apply the proposed methodology to
other workloads, either HTC or HPC, to assess its robustness. Then we plan
to re�ne our classi�cation algorithms to account for the heterogeneity of the
distribution of training jobs in the di�erent time ranges. Thanks to an initial
fast clustering of the training set, we should be able to derive a weighting scheme
for the target classes and thus improve the quality of predictions. We also plan
to design an original learning-based estimator that would leverage the expertise
of both the batch system operators and members of user groups. The idea is to
build on the set of intuitive causes identi�ed in Section 3 to derive a new set of
features on which to train the algorithms. For instance we could include more
information about the facility internal policies (e.g., job boost after maintenance,

or penalties for bad usage) or annual/seasonal patterns (e.g., paper or experiment
deadlines). Finally, we will investigate the use of Deep Learning methods to solve
this job wait time prediction problem.

On a more practical side, we plan to transfer the tools developed during this
study to the team in charge of user support at CC-IN2P3. The objective is to
integrate a new service letting users know how much time their jobs are likely
to wait once submitted to the recently deployed user portal of the computing
center. As part of this e�ort, we also aim at determining the minimal size of
the training set that would allow us to obtain accurate enough results. Indeed,
the training of the ML algorithms has to be done again periodically to account
for variations in the workload or changes of the infrastructure. Reducing the
size of the training set will reduce the onus on the support team and allow for
better reactivity. Finally, we aim at providing users with some feedback on their
submission habits in order to help them reduce the wait time of their jobs.

Acknowledgments

The authors would like to thank Wataru Takase and his colleagues from the
Japanese High Energy Accelerator Research Organization (KEK) for providing
the initial motivation for this work.

References

1. Azevedo, F., Gombert, L., Suter, F.: Reducing the Human-in-the-Loop Component
of the Scheduling of Large HTC Workloads. In: Proc. of the 22nd Workshop on
Job Scheduling Strategies for Parallel Processing. LNCS, vol. 11332, pp. 39�60.
Vancouver, Canada (May 2018). https://doi.org/10.1007/978-3-030-10632-4_3

2. Azevedo, F., Klusá£ek, D., Suter, F.: Improving Fairness in a Large Scale HTC
System Through Workload Analysis and Simulation. In: Proc. of the 25th Interna-
tional Euro-Par Conference (Euro-Par). LNCS, vol. 11725, pp. 129�141. Göttigen,
Germany (Aug 2019). https://doi.org/10.1007/978-3-030-29400-7_10

3. Breiman, L.: Stacked Regressions. Machine Learning 24(1), 49�64 (1996).
https://doi.org/10.1007/BF00117832

4. Brevik, J., Nurmi, D., Wolski, R.: Predicting Bounds on Queuing Delay for Batch-
Scheduled Parallel Machines. In: Proc. of the ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (PPOPP). pp. 110�118. New York,
NY (Mar 2006). https://doi.org/10.1145/1122971.1122989

5. Feitelson, D.: Metrics for Parallel Job Scheduling and Their Convergence. In: Proc.
of the 18th Workshop on Job Scheduling Strategies for Parallel Processing. LNCS,
vol. 2221, pp. 188�206. Cambridge, MA (Jun 2001). https://doi.org/10.1007/3-
540-45540-X_11

6. Feitelson, D., Tsafrir, D., Krakov, D.: Experience with using the Parallel Workloads
Archive. Journal of Parallel and Distributed Computing 74(10), 2967�2982 (2014)

7. Freund, Y., Schapire, R.: A Decision-Theoretic Generalization of On-Line Learning
and an Application to Boosting. Journal of Computer and Systems Sciences 55(1),
119�139 (1997). https://doi.org/10.1006/jcss.1997.1504

https://doi.org/10.1007/978-3-030-10632-4_3
https://doi.org/10.1007/978-3-030-29400-7_10
https://doi.org/10.1007/BF00117832
https://doi.org/10.1145/1122971.1122989
https://doi.org/10.1007/3-540-45540-X_11
https://doi.org/10.1007/3-540-45540-X_11
https://doi.org/10.1006/jcss.1997.1504

8. Gombert, L., Suter, F.: Companion of the "Learning-based Approaches to Estimate
Job Wait Time in HTC Datacenters" article (2021), Available at: https://doi.org/
10.6084/m9.�gshare.13913912

9. Jancauskas, V., Piontek, T., Kopta, P., Bosak, B.: Predicting Queue Wait Time
Probabilities for Multi-Scale Computing. Philosophical Transactions of the Royal
Society A 377(2142) (2019). https://doi.org/10.1098/rsta.2018.0151

10. Kay, J., Lauder, P.: A Fair Share Scheduler. Communications of the ACM 31(1),
44�55 (Jan 1988)

11. Kumar, R., Vadhiyar, S.: Prediction of Queue Waiting Times for Metascheduling
on Parallel Batch Systems. In: Proc. of the 18th Workshop on Job Scheduling
Strategies for Parallel Processing. LNCS, vol. 8828, pp. 108�128. Phoenix, AZ
(May 2014). https://doi.org/10.1007/978-3-319-15789-4_7

12. Li, H., Chen, J., Tao, Y., Groep, D., Wolters, L.: Improving a Local Learning Tech-
nique for QueueWait Time Predictions. In: Proc. of the Sixth IEEE International
Symposium on Cluster Computing and the Grid (CCGrid). pp. 335�342. Singapore
(May 2006). https://doi.org/10.1109/CCGRID.2006.57

13. Li, H., Groep, D., Wolters, L.: E�cient Response Time Predictions by Exploit-
ing Application and Resource State Similarities. In: Proc. of the 6th IEEE/ACM
International Conference on Grid Computing (GRID). pp. 234�241. Seattle, WA
(Nov 2005). https://doi.org/10.1109/GRID.2005.1542747

14. Loh, W.Y.: Classi�cation and Regression Trees. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 1, 14�23 (2011).
https://doi.org/10.1002/widm.8

15. Mu'alem, A., Feitelson, D.: Utilization, Predictability, Workloads, and User Run-
time Estimates in Scheduling the IBM SP2 with Back�lling. IEEE TPDS 12(6),
529�543 (Jun 2001)

16. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825�2830 (2011)

17. Schlagkamp, S., Ferreira da Silva, R., Allcock, W., Deelman, E., Schwiegelshohn,
U.: Consecutive Job Submission Behavior at Mira Supercomputer. In: Proc.
of the 25th ACM International Symposium on High-Performance Parallel
and Distributed Computing (HPDC). pp. 93�96. Kyoto, Japan (May 2016).
https://doi.org/10.1145/2907294.2907314

18. Smith, W.: A Service for Queue Prediction and Job Statistics. In: Proc. of the
2010 Gateway Computing Environments Workshop. pp. 1�8. Los Alamitos, CA
(Nov 2010). https://doi.org/10.1109/GCE.2010.5676119

19. Smith, W., Foster, I., Taylor, V.: Predicting Application Run
Times with Historical Information. JPDC 64(9), 1007�1016 (2004).
https://doi.org/10.1016/j.jpdc.2004.06.008

20. Smith, W., Taylor, V., Foster, I.: Using Run-Time Predictions to Estimate Queue
Wait Times and Improve Scheduler Performance. In: Proc. of the 5th Workshop on
Job Scheduling Strategies for Parallel Processing. LNCS, vol. 1659, pp. 202�219.
San Juan, Puerto Rico (Apr 1999). https://doi.org/10.1007/3-540-47954-6_11

21. The IN2P3 / CNRS Computing Center: http://cc.in2p3.fr/en/
22. Tibshirani, R.: Regression Shrinkage and Selection via the Lasso. Journal of

the Royal Statistical Society. Series B (Methodological) 58(1), 267�288 (1996).
https://doi.org/10.2307/2346178

23. Univa Corporation: Grid Engine. http://www.univa.com/products/

https://doi.org/10.6084/m9.figshare.13913912
https://doi.org/10.6084/m9.figshare.13913912
https://doi.org/10.1098/rsta.2018.0151
https://doi.org/10.1007/978-3-319-15789-4_7
https://doi.org/10.1109/CCGRID.2006.57
https://doi.org/10.1109/GRID.2005.1542747
https://doi.org/10.1002/widm.8
https://doi.org/10.1145/2907294.2907314
https://doi.org/10.1109/GCE.2010.5676119
https://doi.org/10.1016/j.jpdc.2004.06.008
https://doi.org/10.1007/3-540-47954-6_11
http://cc.in2p3.fr/en/
https://doi.org/10.2307/2346178
http://www.univa.com/products/

	Learning-based Approaches to Estimate Job Wait Time in HTC Datacenters

